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MINIMUM-MEAN-SQUARE-ERROR PREDICTION
AND CONDITIONAL EXPECTATIONS

Consider a pair of random vectors x, y whose distribution is characterised
by its first-order and second-order moments:

o e[Y]=[3] e[Y-[a,

A multivariate normal distribution can be characterised in this way.

The object is to predict the departure y — E(y) of y from its expected
value on the basis of the observed departure x — FE(x) of x from its expected
value. If the predicted departure is a linear function of z — F(x), then it can
be expressed as

(2) j— E(y) = B'{z — E(x)},

where 3 is the predicted value of y. Let the error of the prediction be denoted
by €. The combination of the prediction and the error gives

(3) y—E(y)=B{z—E()} +e.

This is described as the linear regression relationship. An alternative way of
denoting the relationship is to write it as

(4) y=a+ B'z+e, with a=E(y)— BE(z).
The matrix B’ may be chosen so as to ensure that the prediction fulfils a
criterion of optimality. If the prediction is to fulfill the minimum mean-square-

error criterion, then a matrix must be chosen which ensures that the prediction
error is uncorrelated with the variables in x. That is to say, we must have

(5) Cle,x) = E{e[m - E(a;)}’} —0;

and it follows that

€ D(e) 0
(6) D = .
x 0 D(x)
The reasoning behind this condition is the observation that, if the predic-
tion error were systematically related to the variables of x, then some part of

it could be predicted, with a consequent improvement in the prediction of y.
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In order to find the value of B, we may begin by constructing the following
equation:

R [ =

This is formed by rearranging equation (3) and thereafter by supplementing it
with a trivial identity. Premultiplying equation (7) by the matrix

® I -B1" [ B
0 I |0 T
gives an equivalent system in the form of

o ] e | P

Now recall the result that, if z and w are two random vectors related by
the equation z = Aw, then their dispersion matrices are related by the equation
D(z) = AD(w)A’. Applying this result to the equation (9) gives

o B =10 TIPS om0
_ [D(e)+B'D(x)B B’D(x)}
D(x)B D(x)

The sole restriction in this construction is that the off-diagonal blocks in the
dispersion matrix following the first equality are zero-valued, which corresponds
to the condition that C(x,e) = 0.

By relating the submatrices on both sides of this equation, it is found that

(11) C(z,y) = D()B
and that
(12) D(y) = B'D(z)B + D(e).

These are two of the essential relationships associated with the linear regression
model of equations (3) and (4). Equation (11) provides an expression for the
matrix B of regression coefficients in the form of

(13) B = D(x)"'C(z,y).
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This expression is closely related to a familiar expression from the theory of
ordinary least-squares regression. In the usual presentation of the theory, the
observations on x and y for t = 1,...,7T are accumulated in the matrices X
and Y as successions of row vectors, each arrayed below its predecessor. If
the observations are in the mean-adjusted form, then the products T-!X’'X
and T~'Y’X become the empirical counterparts of the moment matrices D(z)
and C(y,z) respectively. The estimator of B derived from the principle of
the method of moments, which entails ssubstituting the empirical moments for
their theoretical counterparts, is B = (X’X)~2X'Y; and this is also the form
of the ordinary least-squares regression estimator.

The Calculus of Conditional Expectations

If we assume that the vectors z and y have a joint normal distribution,
then the linear minimum-mean-square error predictor of y, which has been de-
veloped in the previous section, can be identified with the ordinary conditional
expectation of y given x which is denoted by E(y|z). In that case, we may talk
of a calculus of conditional expectations. The essential results of the calculus
are as follows:

E(ylz) = E(y) + C(y,x) D™ (z){z — E(x)},
D(y|lz) = D(y) — C(y,x) D™ (x)C(, y),
E{E(ylz)} = E(y),

D{E(ylz)} = C(y,)D~ " (z)C(z,y),

D(y) = D(y|z) + D{E(y|)},

C{y— E(ylz),z} = 0.

Each of these results corresponds to a result derived in the previous section.
However, various changes in notation have occurred. In the first place, we
must recognise that the the optimal predictor § has becomes the conditional
expectation F(y|x). Thus equation (14) can be obtained from equation (2) by
replacing § by E(y|z) and by substituting for B = D=1 (x)C(z,y) from (13).

Next it should be recognised that D(y|x) is simply a synonym for D(e),
since ¢ = y—E(y|x). Then it can be seen that equation (15) is just a restatement
of equation (12).

Equation (16) describes the relationship between the conditional and the
unconditional expectations. Here the expectation operator which stands out-
side the braces on the LHS relates to an expectation taken with respect to the
variable z. The equation shows how the conditional expectation can be “de-
conditioned” by taking expectations with respect to the conditioning variable,
which is x in this case.
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Equation (17) is obtained directly from equation (14) when it is written in
the form of

(20) E(ylz) — E(y) = C(y,z) D~ (2){z — E(z) },

Recall, once more, the result that, if z and w are two random vectors related
by the equation z = Aw, then their dispersion matrices are related by the
equation D(z) = AD(w)A’. Applying this result to the equation above leads
to (17) once it is recognised that D{z — E(z)} = D(x).

Equation (18) comes from combining equations (15) and (17).

The final equation is a restatement of the condition under (5) which is that
the error of prediction, now denoted by y — F(y|x) = £, must be uncorrelated
with the conditioning variable x.



