
MSc. Econ: MATHEMATICAL STATISTICS, 1995

Cochrane’s Theorem: The Decomposition of a Chi-Square Variate

The standard test of an hypothesis regarding the vector β in the model
N(y;Xβ, σ2I) entails a multi-dimensional version of Pythagoras’ Theorem.
Consider the decomposition of the vector y into the systematic component
and the residual vector. This gives

(1)
y = Xβ̂ + (y −Xβ̂) and

y −Xβ = (Xβ̂ −Xβ) + (y −Xβ̂),

where the second equation comes from subtracting the unknown mean vector
Xβ from both sides of the first. These equations can also be expressed in
terms of the projector P = X(X ′X)−1X ′ which gives Py = Xβ̂ and (I−P )y =
y−Xβ̂ = e. Using the definition ε = y−Xβ within the second of the equations,
we have

(2)
y = Py + (I − P )y and

ε = Pε+ (I − P )ε.

The reason for rendering the equation in this notation is that it enables us to
envisage more clearly the Pythagorean relationship between the vectors. Thus,
using the fact that P = P ′ = P 2 and the fact that P ′(I − P ) = 0, it can be
established that

(3)
ε′ε = ε′Pε+ ε′(I − P )ε or

ε′ε = (Xβ̂ −Xβ)′(Xβ̂ −Xβ) + (y −Xβ̂)′(y −Xβ̂).

The terms in these expressions represent squared lengths; and the vectors them-
selves form the sides of a right-angled triangle with Pε at the base, (I − P )ε
as the vertical side and ε as the hypotenuse.

The usual test of an hypothesis regarding the elements of the vector β is
based on the foregoing relationships. Imagine that the hypothesis postulates
that the true value of the parameter vector is β0. To test this notion, we
compare the value of Xβ0 with the estimated mean vector Xβ̂. The test is
a matter of assessing the proximity of the two vectors which is measured by
the square of the distance which separates them. This would be given by
ε′Pε = (Xβ̂−Xβ0)′(Xβ̂−Xβ0) if the hypothesis were true. If the hypothesis
is untrue and if Xβ0 is remote from the true value of Xβ, then the distance is
liable to be excessive. The distance can only be assessed in comparison with
the variance σ2 of the disturbance term or with an estimate thereof. Usually,
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one has to make do with the estimate of σ2 which is provided by

(4)
σ̂2 =

(y −Xβ̂)′(y −Xβ̂)
T − k

=
ε′(I − P )ε
T − k .

The numerator of this estimate is simply the squared length of the vector
e = (I − P )y = (I − P )ε which constitutes the vertical side of the right-angled
triangle.

The test uses the result that

(5) If y ∼ N(Xβ, σ2I) and if β̂ = (X ′X)−1X ′y, then

F =

{
(Xβ̂ −Xβ)′(Xβ̂ −Xβ)

k

/
(y −Xβ̂)′(y −Xβ̂)

T − k

}
is distributed as an F (k, T − k) statistic.

This result depends upon Cochrane’s Theorem concerning the decomposition
of a chi-square random variate. The following is a statement of the theorem
which is attuned to our present requirements:

(6) Let ε ∼ N(0, σ2IT ) be a random vector of T independently and
identically distributed elements. Also let P = X(X ′X)−1X ′ be a
symmetric idempotent matrix, such that P = P ′ = P 2, which is
constructed from a matrix X of order T × k with Rank(X) = k.
Then

ε′Pε

σ2
+
ε′(I − P )ε

σ2
=
ε′ε

σ2
∼ χ2(T ),

which is a chi-square variate of T degrees of freedom, represents
the sum of two independent chi-square variates ε′Pε/σ2 ∼ χ2(k)
and ε′(I −P )ε/σ2 ∼ χ2(T − k) of k and T − k degrees of freedom
respectively.

To prove this result, we begin by finding an alternative expression for the
projector P = X(X ′X)−1X ′. First consider the fact that X ′X is a symmetric
positive-definite matrix. It follows that there exists a matrix transformation
T such that T (X ′X)T ′ = I and T ′T = (X ′X)−1. Therefore P = XT ′TX ′ =
C1C

′
1, where C1 = XT ′ is a T × k matrix comprising k orthonormal vectors

such that C ′1C1 = Ik is the identity matrix of order k.
Now define C2 to be a complementary matrix of T−k orthonormal vectors.

Then C = [C1, C2] is an orthonormal matrix of order T such that

(7)

CC ′ = C1C
′
1 + C2C

′
2 = IT and

C ′C =
[
C ′1C1 C ′1C2

C ′2C1 C ′2C2

]
=
[
Ik 0
0 IT−k

]
.

2



MSc. Econ: MATHEMATICAL STATISTICS, 1995

The first of these results allows us to set I − P = I − C1C
′
1 = C2C

′
2. Now,

if ε ∼ N(0, σ2IT ) and if C is an orthonormal matrix such that C ′C = IT ,
then it follows that C ′ε ∼ N(0, σ2IT ). In effect, if ε is a normally distributed
random vector with a density function which is centred on zero and which has
spherical contours, and if C is the matrix of a rotation, then nothing is altered
by applying the rotation to the random vector. On partitioning C ′ε, we find
that

(8)
[
C ′1ε
C ′1ε

]
∼ N

([
0
0

]
,

[
σ2Ik 0

0 σ2It−k

])
,

which is to say that C ′1ε ∼ N(0, σ2Ik) and C ′2ε ∼ N(0, σ2IT−k) are indepen-
dently distributed normal vectors. It follows that

(9)

ε′C1C
′
1ε

σ2
=
ε′Pε

σ2
∼ χ2(k) and

ε′C2C
′
2ε

σ2
=
ε′(I − P )ε

σ2
∼ χ2(T − k)

are independent chi-square variates. Since C1C
′
1 +C2C

′
2 = IT , the sum of these

two variates is

(10)
ε′C1C

′
1ε

σ2
+
ε′C2C

′
2ε

σ2
=
ε′ε

σ2
∼ χ2(T );

and thus the theorem is proved.
The statistic under (5) can now be expresed in the form of

(11) F =

{
ε′Pε

k

/
ε′(I − P )ε
T − k

}
.

This is manifestly the ratio of two chi-sqaure variates divided by their respec-
tive degrees of freedom; and so it has an F distribution with these degrees of
freedom. This result provides the means for testing the hypothesis concerning
the parameter vector β.
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