
7 : APPENDIX

Vectors and Matrices

An n-tuple vector x is defined as an ordered set of n numbers. Usually
we write these numbers x1, . . . , xn in a column in the order indicated by their
subscripts. The transpose of x is the row vector x′ = [x1, . . . , xn] and the
transpose of x′ is x again. That is (x′)′ = x. We can display x within the line
by writing x = [x1, . . . , xn]′, which saves space.

An m × n real matrix X is an array of numbers which are set in m rows
and n columns :

(1)
X =


x11 x12 . . . x1n

x21 x22 . . . x2n
...

...
...

xm1 xm2 . . . xmn

 =


x1.

x2.
...
xm.


= [ x.1 x.2 . . . x.n ] .

The subscript associated with the generic element xij is to indicate that it is
located in the ith row and the jth column. It often makes sense to regard an
n-tuple column vector as a matrix of order n× 1.

In (1), the matrix X has been represented also as an ordered set of n
column vectors x.1, . . . , x.n and as an ordered set of m row vectors x1., . . . , xm..
In the notation x.j , which stands for the jth column, the dot in the subscript is
a placeholder which indicates that the row subscript ranges over all the values
1, . . . ,m. The notation xi., which stands for the ith row, is to be interpreted
likewise.

A matrix is often represented in a summary fashion by writing X = [xij ],
which is appropriate when we need to display the generic element.

Although we commonly talk of matrix algebra, it may be more helpful, in
the first instance, to regard a matrix as a mathematical notation rather than as
a mathematical object in its own right. In this way, we can avoid attributing
a specific algebra to matrices; which leaves them free to represent whatever
abstract objects we care to define. Bearing this in mind, one should not be
too confused by the many different roles assumed by matrices. Nevertheless,
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we may define three basic operations for matrices which are applied in many
algebras.

(2) The sum of the m × n matrices A = [aij ] and B = [bij ] is the
m × n matrix A + B = C = [cij ] wherein the generic element is
cij = aij + bij .

(3) The product of the the matrix A = [aij ] and the scalar λ is the
matrix λA = [λaij ].

(4) The product of the m × n matrix A = [aij ] and n × p matrix
B = [bjk] is the m× p matrix AB = C = [cik] wherein the generic
element is cik =

∑
j aijbjk = ai1b1k + ai2b2k + · · ·+ ainbnk.

We shall begin with an account of the algebra of real n-dimensional vector
spaces. In this context, we shall regard an n×m matrix simply as an ordered
set of m column vectors, each of n elements; and, to begin, we shall consider
only the operations under (2) and (3).

Real Coordinate Vector Spaces

The set of all n-tuple vectors with real-valued elements constitutes a real
coordinate space Rn which is closed in respect of the operations of the addition
of vectors and their multiplication by arbitrary scalars. Thus, if x, y ∈ Rn, then
(x+ y) ∈ Rn; and, if λ, µ ∈ R are scalars, then λx, µy ∈ Rn. Combining these
two results, we have

(5) (λx+ µy) ∈ Rn if λ, µ ∈ R and x, y ∈ Rn.

A linear subspace S ⊂ Rn is a subset of the vectors of Rn which is closed in
respect of the two operations. Thus

(6) If (λx+ µy) ∈ S for all x, y ∈ S and λ, µ ∈ R, then S is a vector
subspace.

Notice that a vector subspace must include the zero vector which is the
origin of any coordinate system.

Linear Combinations

If x1, . . . , xp is a set of n-tuple vectors and if λ1, . . . , λp is a set of scalars,
then the sum λ1x1 + · · · + λpxp is said to be a linear combination of these
vectors.

The set of all linear combinations of the column vectors in the n×m matrix
X = [x.1, . . . , x.m] is said to be the manifold of that matrix, and it is denoted
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by M(X). Clearly, this manifold is a linear subspace of Rn. The subspace is
said to be spanned or generated by the column vectors.

A set of vectors x1, . . . , xp is said to be linearly dependent if there exists
a set of scalars λ1, . . . , λp, not all of which are zeros, such that λ1x1 + · · · +
λpxp = 0. If there are no such scalars, then the vectors are said to be linearly
independent.

A set of linearly independent vectors spanning a subspace S is said to
constitute a basis of S. It can be shown that any two bases of S comprise the
same number of vectors which is the maximum number of linearly independent
vectors. This number is called the dimension of S, written Dim{S}.

Any vector x ∈ S can be expressed as a unique linear combination of the
vectors of a basis of S. That is to say, if v1, . . . , vp with p = Dim{S} is a basis
of S and if x = λ1v1 + · · ·+ λpvp, then the scalars λ1, . . . , λp are unique.

The natural basis of Rn is the set of vectors e1, . . . , en which constitute the
columns of the n×n identity matrix In = [e1, . . . , en]. If [x1, . . . , xn]′ = x ∈ Rn
is any vector, then it can be expressed uniquely in terms of the natural basis
as follows:

(7) x = x1e1 + x2e2 + · · ·+ xnen.

The scalars xi are the coordinates of x relative to the natural basis and the
vectors xiei are the projections of x onto the one-dimensional subspaces or lines
spanned by the individual basis vectors. More generally, the vector

(8) [x1, . . . , xp, 0, . . . , 0]′ = x1e1 + · · ·+ epxp

is the projection of x onto the subspace spanned jointly by the vectors e1, . . . , ep
which are a subset of the basis set.

Inner Products and Orthogonality

The inner product of two vectors x, y ∈ Rn is defined by

(9) 〈x, y〉 = x1y1 + x2y2 + · · ·+ xnyn

The norm of the vector x is

(10) ‖x‖ =
√
〈x, x〉.

We define the angle θ between the vectors x and y by

(11) cos θ =
〈x, y〉
‖x‖.‖y‖ .

Two vectors x and y are said to be orthogonal or perpendicular if 〈x, y〉 = 0.
A vector x is said to be orthogonal to a subspace Y if 〈x, y〉 = 0 for all y ∈ Y. A
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subspace X is said to be orthogonal to a subspace Y if 〈x, y〉 = 0 for all x ∈ X
and y ∈ Y. In that case, the only vector which X and Y have in common is
the zero vector. Thus X ∩ Y = 0.

If A and B are two subspaces, not necessarily orthogonal, such that A∩B =
0, then the set of all vectors z = a+ b with a ∈ A and b ∈ B is called a direct
sum of A and B written A⊕ B.

Let X and Y be orthogonal subspaces of Rn and let their direct sum be
X ⊕ Y = Rn. That is to say, any vector z ∈ Rn can be written uniquely as
z = x + y with x ∈ X and y ∈ Y and with 〈x, y〉 = 0. Then X and Y are
orthogonal complements and we may write X = O(Y) and Y = O(X ). We
may indicate that X and Y are orthogonal by writing X ⊥ Y. Likewise, if
〈x, y〉 = 0, then we can write x ⊥ y.

Parametric Representations of Subspaces

Let M(B) be the manifold of the matrix B = [b.1, . . . , b.m] comprising
m linearly independent vectors. That is to say, M(B) is the linear subspace
comprising all linear combinations of the column vectors of B. Then any vector
x ∈ M(B) can be expressed as x = Bλ = λ1b.1 + · · · + λmb.m where λ =
[λ1, . . . , λm]′ is an m-tuple vector. Let p /∈ M(B) be an n-tuple vector. Then
A =M(B)+p is called an affine subspace of Rn or a translated vector subspace,
and the vector p is termed the translation. Any vector x ∈ A can be expressed
as x = Bλ + p for some λ. It makes sense to define the dimension of A to be
equal to that of M(B)

Now consider an n× (n−m) matrix A comprising a set of n−m linearly
independent vectors which are orthogonal to those of B such that A′B = 0 and
M(A)⊕M(B) = Rn. Then, on multiplying our equation by A′, we get

(12)
A′x = A′Bλ+A′p

= A′p = c.

Thus we have an alternative definition of the affine subspace as the set A =
{x;A′x = c}.

There are two limiting cases. In the first case, the matrix A is replaced
by an n × 1 vector a, and we have the equation a′x = c where c is a scalar.
Then the set A = {x; a′x = c} represents a hyperplane in Rn. A hyperplane is
a subspace—in this case an affine subspace—whose dimension is one less than
that of the space in which it resides.

In the second case, A becomes a matrix of order n × (n − 1). Then the
set A = {x;A′x = c} defines a line in Rn which is an one-dimensional affine
subspace.

Matrices as Linear Transformations
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An m × n matrix A can be regarded as a linear transformation mapping
from the space Rn to the space Rm. Thus the equation y = Ax describes
how the n-tuple vector x = [x1, . . . , xn]′ is mapped into the m-tuple vector
y = [y1, . . . , ym]′.

If x, z ∈ Rn are vectors and if λ, µ ∈ R are scalars, then

(13) A(λx+ µz) = λAx+ µAz.

This equation represents the linearity of the transformation. Thus, for a linear
transformation, the operations of vector addition and scalar multiplication may
be performed equally in Rn, prior to the transformation of the product, or in
Rm, after the separate transformations of the two vectors.

There are various linear spaces associated with a transformation A. The
null space of A, denoted N (A) = {x;Ax = 0}, is the set of all x ∈ Rn which
are mapped into the zero vector 0 ∈ Rm. The dimension of the null space is
called the nullity of A, denoted Null(A).

The range space of A, denoted R(A) = {y; y = Ax, x ∈ Rn} is the set of
all y ∈ Rm which represent the mapping under A of some x ∈ Rn. We can
also write R(A) = ARn, which makes it explicit that the domain of A is the
space Rn. The dimension of R(A) is the rank of A denoted Rank(A). There is
the following relationship between the rank of A, its nullity and the dimension
of its domain Rn:

(14) Null(A) + Rank(A) = Dim{Rn}.

Notice thatR(A) is simply the set of all linear combinations of the columns
of the matrix A which we have previously described as the manifold of M(A)
of the matrix.

The Composition of Linear Transformations

Let the p × n matrix A = [akj ] represent a transformation from Rn to
Rp and let the m × p matrix B = [bik] represent a transformation from Rp
to Rm. Then their composition is the matrix C = BA = [cij ] of order m × n
representing a transformation from Rn to Rm. Sylvester’s theorem states that

(15) Rank(BA) ≤ min
{

Rank(B),Rank(A)
}
.

Proof. We have R(B) = BRp and R(BA) = BR(A) with R(A) ⊂ Rp; so it
must be true that Dim{BR(A)} = Rank(BA) ≤ Rank(B) = Dim{BRp}.

To prove that Rank(BA) ≤ Rank(A), consider a basis a1, . . . , ag of R(A)
consisting of a set of g = Rank(A) linearly independent vectors. Then the range
space R(BA) = BR(A) of the composition is spanned by the transformed
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vectors Ba1, . . . , Bag. For, if y = λ1a1 + · · · + λgag is any vector in R(A),
then its image is z = By = λ1Ba1 + · · · + λgBag. It follows that, in any
basis of R(BA), the number of linearly independent vectors does not exceed
g = Rank(A) and may be less. Thus Rank(BA) ≤ Rank(A).

Transformations on Rn

We may regard an n× n matrix A as a transformation on Rn. There are
a few such transformation which are of prime importance. We shall consider,
in turn, the inverse matrix, the class of orthonormal matrices, and the class of
orthogonal projectors.

The inverse matrix A−1 is defined by the conditions AA−1 = A−1A = In.
It follows from Sylvester’s Theorem that

n = Rank(In) ≤ min
{

Rank(A),Rank(A−1)
}
,

which implies that Rank(A) ≥ n. But we also have the result that n =
Rank(A)+Null(A), which implies that Rank(A) ≤ n. Therefore Rank(A) = n;
and this is the necessary and sufficient condition for the existence of the inverse
matrix.

A matrix C is said to be orthonormal if it satisfies the conditions C ′C =
CC ′ = I.

(16) If C is orthonormal and if x, y ∈ Rn are any two vectors, then
‖x‖ = ‖Cx‖ and ‖y‖ = ‖Cy‖. Also the angle θ between Cx and
Cy is the same as the angle between x and y.

Proof. In the first place, we have ‖x‖ =
√
〈x, x〉 =

√
x′x. Also, we have

‖Cx‖ =
√
〈Cx,Cx〉 =

√
xC ′Cx =

√
x′x, so ‖x‖ = ‖Cx‖. Likewise, we

can show that ‖y‖ = ‖Cy‖. Next, we have 〈Cx,Cy〉 = x′C ′Cy = x′y, so
〈Cx,Cy〉 = 〈x, y〉. It follows that

(17) cos θ =
〈Cx,Cy〉
‖Cx‖.‖Cy‖ =

〈x, y〉
‖x‖.‖y‖ ,

where the last expression is for the cosine of the angle between x and y.

In view of the properties demonstrated above, the orthonormal matrix is
said to represent an isometric transformation. In fact, in two and three dimen-
sions, orthonormal matrices correspond either to reflections or to rotations.

Example. Consider the matrix

(18) C =
[

cos θ − sin θ
sin θ cos θ

]
.
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It is readily confirmed that C ′C = CC ′ = I. Moreover, the effect of the
transformation on any vector x ∈ R2 is to rotate it in an anticlockwise sense
through an angle of θ relative to the natural coordinate system. Alternatively,
we can conceive of the vector remaining fixed while the coordinate system
rotates in an anticlockwise sense.

Let C = C(θ) and Q = Q(φ) be two orthonormal matrices defined in the
manner of (18). Then their product CQ is also an orthonormal matrix:

(19)
[

cos θ − sin θ
sin θ cos θ

] [
cosφ − sinφ
sinφ cosφ

]
=
[

cos(θ + φ) − sin(θ + φ)
sin(θ + φ) cos(θ + φ)

]
.

This result, which arises intuitively, may be established using the following
trigonometrical identities which are known as the compound-angle formulae:

(20)
cos(θ + φ) = cos θ cosφ− sin θ sinφ,

sin(θ + φ) = sin θ cosφ+ cos θ sinφ.

A symmetric idempotent matrix is one which satisfies the conditions P =
P ′ = P 2 or, equivalently, the condition P ′(I − P ) = 0. Such a matrix is also
described as an orthogonal or minimum-distance projector for reasons which
will become apparent shortly. The matrix has the following characteristics:

(21) (i) If x ∈M(P ), then Px = x and (I − P )x = 0,

(ii) The conditions P (I − P ) = 0 and (I − P )P = 0 imply that
R(I − P ) = N (P ) and R(P ) = N (I − P ),

(iii) The direct sumM(P )⊕M(I−P ) = Rn describes an orthogonal
decomposition of Rn with M(P ) ⊥M(I − P ).

We may summarise by saying that P acts as an identity transformation on
M(P ) and as a zero transformation onM(I−P ). Moreover, any vector y ∈ Rn
is decomposed uniquely as y = Py + (I − P )y where Py ⊥ (I − P )y.

The result under (20, i) is the consequence of the condition of idempotency,
P = P 2 or P (I −P ) = 0, which is the defining condition of any projector. The
result under (20, iii) is the consequence of the additional condition of symmetry,
P = P ′, which induces the condition of orthogonality, P ′(I−P ) = 0. The latter
ensures that the distance between a vector y and its image Py is minimised by
the projector. Thus

(22) If P = P ′ = P 2 and if Px is any vector in R(P ),
then ‖y − Py‖ ≤ ‖y − Px‖.
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Proof. We have

‖y − Px‖2 = ‖(y − Py)− (Px− Py)‖2

= (y − Py)′(y − Py)− 2(y − Py)′(Px− Py)
+ (Px− Py)′(Px− Py)

= ‖y − Py‖2 + ‖Px− Py‖2 − 2y′(I − P )′P (x− y).

It follows that ‖y − Px‖2 = ‖y − Py‖2 + ‖Px − Py‖2 for all x, y ∈ Rn, or,
equivalently, that ‖y − Px‖ ≥ ‖y − Py‖, if and only if (I − P )′P = 0, which is
equivalent to the conditions P = P ′ = P 2.

Characteristic Roots and Vectors of a Symmetric Matrix

Let A be an n× n symmetric matrix such that A = A′, and imagine that
the scalar λ and the vector x satisfy the equation Ax = λx. Then λ is a
characteristic root of A and x is a corresponding characteristic vector. We also
refer to characteristic roots as latent roots or eigenvalues. The characteristic
vectors are also called eigenvectors.

(23) The characteristic vectors corresponding to two distinct character-
istic roots are orthogonal. Thus, if Ax1 = λ1x1 and Ax2 = λ2x2

with λ1 6= λ2, then x′1x2 = 0.

Proof. Premultiplying the defining equations by x′2 and x′1 respectively, gives
x′2Ax1 = λ1x

′
2x1 and x′1Ax2 = λ2x

′
1x2. But A = A′ implies that x′2Ax1 =

x′1Ax2, whence λ1x
′
2x1 = λ2x

′
1x2. Since λ1 6= λ2, it must be that x′1x2 = 0.

The characteristic vector corresponding to a particular root is defined only
up to a factor of proportionality. For let x be a characteristic vector of A such
that Ax = λx. Then multiplying the equation by a scalar µ gives A(µx) =
λ(µx) or Ay = λy; so y = µx is another characteristic vector corresponding to
λ.

(24) If P = P ′ = P 2 is a symmetric idempotent matrix, then its
characteristic roots can take only the values of 0 and 1.

Proof. Since P = P 2, it follows that, if Px = λx, then P 2x = λx or P (Px) =
P (λx) = λ2x = λx, which implies that λ = λ2. This is possible only when
λ = 0, 1.

The Diagonalisation of a Symmetric Matrix
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Let A be an n×n symmetric matrix, and let x1, . . . , xn be a set of n linearly
independent characteristic vectors corresponding to its roots λ1, . . . , λn. Then
we can form a set of normalised vectors

c1 =
x1√
x′1x1

, . . . , cn =
xn√
x′nxn

,

which have the property that

c′icj =
{ 0, if i 6= j;

1, if i = j.

The first of these reflects the condition that x′ixj = 0. It follows that C =
[c1, . . . , cn] is an orthonormal matrix such that C ′C = CC ′ = I.

Now consider the equation A[c1, . . . , cn] = [λ1c1, . . . , λncn] which can also
be written as AC = CΛ where Λ = Diag{λ1, . . . , λn} is the matrix with λi as
its ith diagonal elements and with zeros in the non-diagonal positions. Post-
multiplying the equation by C ′ gives ACC ′ = A = CΛC ′; and premultiplying
by C ′ gives C ′AC = C ′CΛ = Λ. Thus A = CΛC ′ and C ′AC = Λ; and C is
effective in diagonalising A.

Let D be a diagonal matrix whose ith diagonal element is 1/
√
λi so that

D′D = Λ−1 and D′ΛD = I. Premultiplying the equation C ′AC = Λ by D′

and postmultiplying it by D gives D′C ′ACD = D′ΛD = I or TAT ′ = I, where
T = D′C ′. Also, T ′T = CDD′C ′ = CΛ−1C ′ = A−1. Thus we have shown that

(25) For any symmetric matrix A = A′, there exists a matrix T such
that TAT ′ = I and T ′T = A−1.
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