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Seemingly-Unrelated
Regressions

The Algebra of the Kronecker Product. Consider the matrix equation
Y = AXB′ where

(1)

Y = [ykl]; k = 1, . . . , r, l = 1, . . . , s,

X = [xij ]; i = 1, . . . ,m, j = 1, . . . , n,

A = [aki]; k = 1, . . . , r, i = 1, . . . ,m,

B = [blj ]; l = 1, . . . , s, j = 1, . . . , n.

The object is to reformulate this matrix equation so that it can be treated as
an ordinary vector equation. Amongst the advantages which this will bring
is the possibility of solving the equation by the methods which are commonly
applied in finding the solutions to vector equations.

Therefore consider writing Y = AXB′ more explicitly as

(2)
[y.1, y.2, . . . , y.s] = A[x.1, x.2, . . . , x.n][b′1., b

′
2., . . . , b

′
s.]

= [Ax.1, Ax.2, . . . , Ax.n][b′1., b
′
2., . . . , b

′
s.].

In this notation, the expression x.j stands for the jth column of the matrix X
whilst the notation bl. stands for the lth row of B. Therefore the transposed
vector b′l. = [bl1, bl2, . . . , bln]′ is a column vector of n elements—as it must be if
the multiplication of the two expressions on the RHS of (2) is to be properly
defined. By performing that multiplication, we find that

(3)

[y.1, y.2, . . . , y.s] =
[
{b11Ax.1 + b12Ax.2 + · · ·+ b1nAx.n},

{b21Ax.1 + b22Ax.2 + · · ·+ b2nAx.n}, . . . ,

{bs1Ax.1 + bs2Ax.2 + · · ·+ bsnAx.n}
]
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Here, each of the expressions on the the RHS within braces {, } stands for one
of the vectors y.1, y.2, . . . , y.s on the LHS. These LHS vectors may be stacked
vertically one below the other to form long vectors. When the RHS of the
equation is rearranged likewise, a system is derived which takes the form of

(4)


y.1
y.2
...
y.s

 =


b11A b12A . . . b1nA
b21A b22A . . . b2nA

...
...

...
bs1A bs2A . . . bsnA



x.1
x.2
...
x.n

 .
The system can be written is a summary notation as

(5) Y c = (AXB′)c = (B ⊗A)Xc.

Here the long vectors Y c and Xc are derived simply by slicing the matrices and
rearranging the columns in the manner which we have described. The matrix
B ⊗ A = [bljA], whose (lj)th partition contains the matrix bljA, is described
as the Kronecker product of B and A.

The following rules govern the use of the Kronecker product:

(6)

(i) (A⊗B)(C ⊗D) = AC ⊗BD,

(ii) A⊗ (B + C) = (A⊗B) + (A⊗B),

(iii) λ(A⊗B) = λA⊗B = A⊗ λB,

(iv) (A⊗B)−1 = (A−1 ⊗B−1).

The Kronecker product is non-commutative, which is to say that A⊗B 6= B⊗A.
However, observe that

(7) A⊗B = (A⊗ I)(I ⊗B) = (I ⊗B)(A⊗ I).

Systems with Multiple Outputs. The typical regression equation describes
a system which transforms k observable inputs and a stochastic disturbance into
a single output. We now wish to consider a system which produces M outputs.
Consider, therefore, the equations

(8)
[yt1, yt2, . . . , ytM ] = [xt.β.1, xt.β.2, . . . , xt.β.M ] + [εt1, εt2, . . . , εtM ]

= xt.[β.1, β.2, . . . , β.M ] + [εt1, εt2, . . . , εtM ].

Here the generic equation is

(9) ytm = xt.β.m + εtm;
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and this has the form of a single regression equation. In a notation which mixes
matrices and vectors, the system under (8) may be written as

(10) yt. = xt.B + εt.,

where B = [β.1, β.2, . . . , β.M ], and T realisations of the latter may be compiled
to give the equation

(11) Y = XB + E ,

or

(12) [y.1, y.2, . . . , y.M ] = [x.1, x.2, . . . , x.k]B + [ε.1, ε.2, . . . , ε.M ].

When the latter equation is vectorised, we have

(13) Y c = (XBI)c + Ec = (I ⊗X)Bc + Ec,

which can be written more explicitly as

(14)


y.1
y.2
...
y.s

 =


X 0 . . . 0
0 X . . . 0
...

...
...

0 0 . . . X



β.1
β.2
...

β.M

+


ε.1
ε.2
...

ε.M

 =


Xβ.1
Xβ.2

...
Xβ.M

+


ε.1
ε.2
...

ε.M

 .
Some assumptions must now be made regarding the disturbance terms

of the model. We shall assume that, taken separately, the M equations
y.m = Xβ.m + ε.m;m = 1, . . . ,M have the stochastic structure of the clas-
sical linear model; which is to say that the disturbances are independently and
identically distributed with an expected value of zero and a common variance.
However, we shall assume that the M contemporaneous disturbances in the
vector εt. = [εt1, . . . , εtM ] have nonzero covariances such that

(15) D(εt.) = E(ε′t.εt.) = Σ = [σml] for all t.

Thus, if ε.m and ε.l are vectors of T disturbances from the equations y.m =
Xβ.m + ε.m and y.l = Xβ.l + ε.l respectively, then we should have

(16)

E(ε.m) = E(ε.l) = 0 and

D(ε.m) = σmmIT , D(ε.l) = σllIT ,

C(ε.m, ε.l) = σmlIT ,
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where C(ε.m, ε.l) = E(ε.mε′.l) is the covariance matrix of the two vectors.
Putting these assumptions together, we get

(17) E(Ec) = 0 and D(Ec) = E(EcEc′) = Σ⊗ IT .

It may be appropriate to write these in a manner which makes them more
explicit. First there is the assumption concerning the expected value of the
long vector of disturbances. Writing this vector in transposed form gives

(18) E(Ec′) = E[ε′.1, ε
′
.2, . . . , ε

′
.M ] = [ 0, 0, . . . , 0 ].

The assumptions concerning the dispersion matrix of this vector can be written
as

(19)

D


ε.1
ε.2
...

ε.M

 = E


ε.1ε

′
.1 ε.1ε

′
.2 . . . ε.1ε

′
.M

ε.2ε
′
.1 ε.2ε

′
.2 . . . ε.2ε

′
.M

...
...

...
ε.Mε

′
.1 ε.Mε

′
.2 . . . ε.Mε

′
.M



=


σ11IT σ12IT . . . σ1MIT
σ21IT σ22IT . . . σ2MIT

...
...

...
σM1IT σM2IT . . . σMMIT

 .
It is common to denote the regression model y = Xβ + ε in which E(ε) =

0 and E(ε) = σ2Q by the triplet (y;Xβ, σ2Q). Using the same notation,
we may now denote the vectorised version of the model with M outputs as
(Y c; (I ⊗ X)Bc,Σ ⊗ I). It is apparent that the two models are isomorphic,
which is to say that they share the same structure. Therefore it is possible to
estimate the parameters of the M -output model, once it has been cast in the
appropriate form, by using methods which have been developed in the context
of a single-equation model.

The approrpriate method is generalised least-squares regression. When it
is applied to the model (y;Xβ, σ2Q), this method delivers the estimate β̂ =
(X ′Q−1X)−1X ′Q−1y. When it is applied to the M -equation model the method
delivers the estimate

(20) B̂ =
{

(I ⊗X)′(Σ⊗ I)−1(I ⊗X)
}−1

(I ⊗X)′(Σ⊗ I)−1Y c.

The algebraic rules under (6) can now be invoked to simplify this result. It can
be see that

(21)

B̂ = (Σ−1 ⊗X ′X)−1(Σ⊗X ′)−1Y c

=
{
I ⊗ (X ′X)−1X ′

}
Y c

=
{

(X ′X)−1X ′Y
}c
.
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Thus it transpires that the efficient system-wide estimator amounts to nothing
more than the repeated application of the ordinary least-squares procedure to
generate the regression estimates β̂.m = (X ′X)−1X ′y.m;m = 1, . . . ,M .

We can use the residual vectors e.m = y.m−Xβ̂.m from theseM estimations
to derive estimates of the elements of Σ = [σml]. Thus an unbiased estimator
of σml is

(22)
σ̂ml =

e′.me.l
T − k =

(y.m −Xβ̂.m)′(y.l −Xβ̂.l)
T − k

=
y′.m{I −X(X ′X)−1X ′}y.l

T − k .

The reduction of the system-wide estimator to an M -fold application of
ordinary least-square regression occurs only when all the variables in X are
present in each of the M equations and when no other variables are present in
any of them. If some of the variables are missing, or if we have a priori infor-
mation relating to the parameter vectors β.m;m = 1, . . . ,M , then, to obtain
efficient estimates, we must use the available information on Σ. For example,
let Xm be the submatrix containing only those variables which are present in
the mth equation. Then the system of equations assumes the following form:

(23)


y.1
y.2
...
y.s

 =


X1 0 . . . 0
0 X2 . . . 0
...

...
...

0 0 . . . XM



β1

β2
...
βM

+


ε.1
ε.2
...

ε.M

 .
This can be written in summary notation as

(24) Y c = Wδ + Ec.

Now the block-diagonal or “staircase” matrix W no longer has the structure of
a Kronecker product. Nor can the subvectors of δ′ = [β′1, β

′
2, . . . , β

′
M ] be stacked

together in a matrix B, for the reason that they are liable to be of different
lengths. The efficient generalised least-squares estimator of the parameters now
takes the form of

(25) δ̂ =
{
W ′(Σ−1 ⊗ I)W

}−1
W ′(Σ−1 ⊗ I)Y c;

and there in no longer any possibility of simplifying or reducing the expression.
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