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An Index Notation for
Multivariate Analysis

1. Tensor Products and Formal Orderings

The algebra of multivariate statistical analysis is, predominantly, the al-
gebra of tensor products, of which the Kronecker product of matrices is a
particular instance.

The Kronecker product of the t × n matrix B = [blj ] and the s × m
matrix A = [aki] is defined as an ts×nm matrix B⊗A = [bljA] whose
ljth partition is bljA.

In many statistical texts, this definition provides the basis for subsequent alge-
braic developments. The disadvantage of using the definition without support
from the theory of multilinear algebra is that the results which are generated
often seem purely technical and lacking in intuitive appeal.

Another approach to the algebra of tensor products relies upon the algebra
of abstract vector spaces. Thus

The tensor product U ⊗ V of two finite-dimensional vector spaces U
and V may be defined as the dual of the vector space of all bilinear
functionals on U and V.

This definition facilitates the development of a rigorous abstract theory. In
particular, U ⊗ V, defined in this way, already has all the features of a vector
space. However, the definition also leads to acute technical difficulties when
we seek to represent the resulting algebra in terms of coordinate vectors and
matrices.

The approach which we shall adopt here is to define tensor products in
terms of formal products. According to this approach, a definition of U⊗V may
be obtained by considering the set of all objects of the form

∑
i

∑
j xij(ui⊗vj),

where ui⊗vj , which is described as an elementary or decomposable tensor prod-
uct, comprises an ordered pair of elements taken from the two vector spaces. If
the latter are coordinate vector spaces, then, of course, their elements will be
ordered sets of numbers.
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The cost of this approach is that, in theory, we have to impose the prop-
erties of a vector space one-by-one on the set of objects which we have defined.
These properties are no longer inherited from the parent spaces U and V.

Since we are interested in coordinate-specific representations of multiple
tensor products, and since part of our aim is to understand how best to repre-
sent the latter within a computer, we shall devote the remainder of the present
section to the question of formal orderings. We may begin with the definition
of a Cartesian product:

If A and B are two sets of objects, then their Cartesian product A×B
is the set of all pairs (a, b) with a ∈ A and b ∈ B.

Notice that the definition entails an ordering of the elements a and b within
the pair (a, b), which serves, at least, to indicate the origin of the elements.
However, the ordering might also correspond to a non-symmetric relationship
between the sets A and B. In that case, (a, b) is distinguished from (b, a) and
only the first of these is admitted to the definition.

Imagine that A = {ai; i = 1, . . . , m} and B = {bj ; j = 1, . . . , n} are them-
selves ordered sets and that ai ∈ A precedes bj ∈ B in any pair (ai, bj). Then a
so-called lexicographic or “dictionary” ordering is induced over the set of pairs
which is arranged in the following fashion:{

(a1, b1), (a1, b2), . . . , (a1, bn), (a2, b1), . . . , (a2, bn), . . . , (am, bn)
}

. (1)

If a′ = [a1, . . . , an] and b′ = [b1, . . . bm] are coordinate vectors, and if (ai, bj)
stands for the product of two numbers, then what is displayed above amounts
to the elementary tensor product a′ ⊗ b′.

A lexicographic ordering of this nature arises when we map an m × n
matrix X = [xij ] into a sequence of memory locations within a computer.
If the elements of the matrix are mapped row-by-row into the memory, then
the sequence of addresses will correspond to the following sequence of matrix
elements:

x11, x12, . . . , x1n, x21, . . . , x2n, . . . , xmn. (2)

In order to access the value of xij , we should need to construct a pointer
to the corresponding memory address. If the addresses were numbered sequen-
tially from 1 to mn, then the pointer would indicate the {(i−1)n+j}th address.
We must emphasise that the pointer serves only to locate the value of xij . It
does not reveal the nature of the abstract object—a matrix in this case—to
which the element belongs. For this purpose, we need a further device.

Now consider the matter of forming the product of the ordered set A× B
with another ordered set C = {ck; k = 1, . . . , p}. In the simplest case, we can
define the product to be the set (A × B) × C comprising all pairs ((ai, bj), ck)
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with (ai, bj) ∈ A × B; and ck ∈ C. If the elements in the pairs bear a sym-
metric relationship to each other—such as a relationship of orthogonality for
example—then we may remove the inner parentheses so as to write the elements
of the product of the sets as ordered triples (ai, bj , ck).

The set of all such triples is ordered according to a lexicographic scheme
comprising the three indices i, j and k. The value of element (ai, bj , ck) may
be extracted from the corresponding array within a computer by pointing to
the {(i− 1)np + (j − 1)p + k}th address. It should be clear how such a scheme
can be extended to encompass multiple products of any order.

Matters become considerably more complicated if the relationship between
elements of a pair is non-symmetric, and if both (ai, bj) and (bj , ai) are admitted
when ai ∈ A and bj ∈ B. In that case, a distinction arises between (ck, (ai, bj))
and ((bj , ai), ck). Moreover, the notation becomes ambiguous unless ai and
bj bear marks of their origins. Such ambiguity can be avoided by placing
parentheses around the initial element ai. On removing the commas, which
have become redundant, we get (3ck(2(1ai)1bj)2)3 and (3(2bj(1ai)1)2ck)3 . These
expressions are to be interpreted in view of the ordering of the sets A, B and
C in which the elements in the triples originate. Thus the element ai in the
innermost parenthesis originates in the first set A, the element bj within the
next parentheses originates in the second set B, and so on. The subscripts on
the parentheses are only for legibility.

The next point to notice about the triples is that the elements bj and
ck have acquired attributes by virtue of their position within non-symmetric
relationships. Thus, in the product (3ck(2(1ai)1bj)2)3 , for example, ck is a left
element whereas bj is a right element. However, the innermost element ai has
neither of these attributes. In order to attribute a position to ai, we make use
of a dummy element denoted by an zero. Thus, in place of (ai), we may write
((0)ai) if ai is a right element or else (ai(0)) if it is a left element.

Within the computer, the set of the triples will continue to be stored in a
one-dimensional array which conveys no information about the nature of the ob-
ject to which the elements belong. The array must be accompanied by a bridge
which links it to the abstract object. Such a bridge can be constructed using the
parenthesis notation. Consider, for example, the triple (3ck(2(1(0)ai)1bj)2)3 . If
the elements ai, bj and ck are replaced by their respective indices i, j and k, then
we obtain a string of integers and parentheses, (3k(2(1(0)i)1j)2)3 . This serves
two purposes. One the one hand, the numbers i, j, k enable us to construct a
pointer to a memory address within the one-dimensional computer array which
contains the value of the element. On the other hand, the parentheses serve to
define the nature of the object to which the element belongs.

The bridge has two more components. The first of these is a dimensions
vector which records the upper limits of the indices. This information is needed
in the construction of the pointer. The second is a permutation vector which
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allows pairs of indices to swap their positions within the nest of parentheses
without severing their connections, via the pointer, with the corresponding
memory locations.

Example. The parenthesis notation, it must be admitted, is not easy to read
by eye. In practice, it is intended to be read by a computer. To understand the
effect of the notation in a simple context, let us consider once more the m × n
matrix X = [xij ] whose elements are arrayed in lexicographic order under (2).

Imagine that the array is accompanied by the bridge (j((0)i)). Then we
should understand that the index i of the element xij , which is a right index
within the bridge, is a row index of a matrix. The index j, which is a left index
in the bridge, is a column index of a matrix.

Imagine, instead, that the array is accompanied by the bridge ((i(0))j).
Then it is implied that the element xij is to be found in the jth row and the
ith column of the matrix X ′ which is the transpose of X.

Finally, let us imagine that the array is accompanied by (j(i(0))). Then
xij is an element of a long column vector Xc = [x11, x21, . . . , xmn]′ constructed
by slicing the matrix X vertically and joining the columns end-to-end. We may
notice that the elements are arrayed in a reversed lexicographic order with the
index j as the principal classifier. An indication of this reversal is provided by
the fact that, when we read from left to right, the indices in the bridge are also
in reversed order. If the array were accompanied by the bridge (((0)i)j), then
we should understand that xij is an element of a long row vector Xr whose
elements are arrayed in the same lexicographic order as the addresses of the
memory cells which store their values.

The objects X, X ′, Xr and Xc all share the same elements. There may
be numerous occasions when we wish to transform one of these objects into
another. The foregoing example makes it clear that such transformations can
be performed by using the bridge alone. There is no need to alter or disturb
the memory locations in which the values of the elements are stored.

2. The Index Notation and the Vectorisation Operations

In this section, we shall begin to develop a serviceable index notation which
conveys the same information as the bridge notation but which is intended for
human manipulation rather than machine calculation. We start by recapitu-
lating some of the results from the end of the previous section.

Consider the m × n matrix X = [xij ] which has the scalar xij in the ith
row and the jth column. Let ei be a column vector of order m with a unit in
the ith position and with zeros elsewhere, and let ej be a row vector of order
n with a unit in the jth position and with zeros elsewhere. Then ei ⊗ ej is a
matrix of order m×n with a unit in the ijth position and zeros elsewhere, and
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we have
X =

∑
i

∑
j

xij(ei ⊗ ej). (3)

We propose to write this as
X = (xije

j
i ). (4)

Here we have ej
i = ei ⊗ ej . The expression xije

j
i is surrounded by parentheses,

and these are to indicate that summation takes place in respect of both of the
indices associated with the basis elements ej

i .
We might be tempted to flout convention by writing the scalar element xij

as xj
i so that the positions of its indices would conform with those of the basis

elements. In this way, we would avoid giving precedence to either of the indices.
However, a convention which gives precedence to one or other of the indices
is precisely what is required for the purpose of reducing a two-dimensional
array to a linear sequence in which the elements are liable to stored within a
computer.

Naturally, the expression in (4) may be specialised by the omission of one
or other of the indices to give a column vector or a row vector. Thus (xiei)
is the column vector [x1, . . . , xm]′, whilst (xje

j) is the row vector [x1, . . . , xn].
An easy mnemonic springs to mind: an raised index in the roof signifies a row
whereas a lowered index in the cellar signifies a column.

We may also construct row and column vectors from the matrix X by the
processes of vectorisation. We define Xc to be a column vector whose generic
element xij is contained in the {(j − 1)m + i}th position. Since eji = ej ⊗ ei is
an mn × 1 column vector with a unit in that position and zeros elsewhere, it
follows that Xc =

∑
i

∑
j xij(ej ⊗ ei) or, equivalently,

Xc = (xijeji). (5)

A comparison of this with the expression under (4) shows that (xije
j
i )

c =
(xijeji). Thus, when we convert the superscript j to a subscript, we move it to
the head of the existing string of subscripts. The indices of the elements of Xc

follow a reversed lexicographic ordering.
These conventions conform with those of the bridge notation of the previ-

ous section. Thus, whereas the matrix X is associated with the bridge notation
(j((0)i)) wherein i is a row index and j is a column index, the long column
vector Xc is associated with the notation (j(i(0))). The mapping from X to Xc

is accomplished by the simple commutation which changes ((0)i) into (i(0)).
The alternative way of vectorising the matrix X is to create a row vector

Xr of order 1×mn whose generic element xij is contained in the {(i−1)n+j}th
position. Since eij = ei⊗ej is a row vector with a unit in that position an with
zeros elsewhere, we have

Xr = (xije
ij), (6)
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and thus we have the convention that (xije
j
i )

r = (xije
ij). When we convert

the subscript i to a superscript, we move it to the head of the existing string
of superscripts. The indices of the elements in Xr follow a direct lexicographic
ordering. In the bridge notation, Xr is associated with (((0)i)j).

It remains only to consider the operation of transposition. This is sum-
marised by the identity (ei ⊗ ej)′ = (ej ⊗ ei) which leads us to the expression

X ′ = (xije
j
i )

′ = (xije
i
j). (7)

It follows that
(X ′)c = (Xr)′ and (Xc)′ = (X ′)r. (8)

The transformation of Xc = (xijeji) into (X ′)c = (xijeij) is effected by an
operator know variously as the vec-permutation matrix, according to Henderson
and Searle [4], the commutation matrix, according to Magnus and Neudecker
[8], or the tensor commutator, according to Pollock [9].

In the bridge notation, Xc is associated with (j(i(0))) whereas (X ′)c is as-
sociated with (i(j(0))). The swapping of the positions of i and j is accompanied
by a corresponding interchange within the permutation vector. It is notable
that the transformation of X into X ′, which corresponds to the transformation
of (j((0)i)) into ((i(0))j), does not affect the permutation vector.

Example. Consider the equation

ytj = µ + γt + δj + εtj (9)

wherein t = 1, . . . , T and j = 1, . . . , M . This relates to a two-way analysis of
variance. For a concrete interpretation, we may imagine that ytj is an obser-
vation taken at time t in the jth region. Then the parameter γt represents an
effect which is common to all observations taken at time t, whilst the parameter
δj represents a characteristic of the jth region which prevails through time.

In ordinary matrix notation, the set of TM equations becomes

Y = µιT ι′M + γι′M + ιT δ′ + E , (10)

where Y = [ytj ] and E = [εtj ] are matrices of order T × M , γ = [γ1, . . . , γT ]′

and δ = [δ1, . . . , δM ]′ are vectors of orders T and M respectively, and ιT and
ιM are vectors of units whose orders are indicated by their subscripts.

In terms of the index notation, the TM equations are represented by

(ytje
j
t ) = µ(ej

t ) + (γte
j
t ) + (δje

j
t ) + (εtje

j
t ). (11)
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As an illustration, we may consider the case where T = M = 3. Then
equations (10) and (11) represent the following structure: y11 y12 y13

y21 y22 y23

y31 y32 y33

 = µ

 1 1 1
1 1 1
1 1 1

 +

 γ1 γ1 γ1

γ2 γ2 γ2

γ3 γ3 γ3


+

 δ1 δ2 δ3

δ1 δ2 δ3

δ1 δ2 δ3

 +

 ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 .

(12)

3. Multiple Tensor Products

The tensor product entails an associative operation which combines ma-
trices or vectors of any order. Let B = [blj ] and A = [aki] be arbitrary matrices
of orders t×n and s×m respectively. Then their tensor product B⊗A, which
is also know as a Kronecker product, is defined in terms of the index notation
by writing

(blje
j
l ) ⊗ (akie

i
k) = (bljakie

ji
lk). (13)

Here eji
lk stands for a matrix of order st × mn with a unit in the row indexed

by lk—the {(l − 1)s + k}th row—and in the column indexed by ji—the {(j −
1)m + i}th column—and with zeros elsewhere. We may notice that the indices
lk are not ordered relative to the indices ji. That is to say, we have

eji
lk = el ⊗ ek ⊗ ej ⊗ ei

= ej ⊗ ei ⊗ el ⊗ ek

= ej ⊗ el ⊗ ek ⊗ ei

= el ⊗ ej ⊗ ei ⊗ ek

= el ⊗ ej ⊗ ek ⊗ ei

= ej ⊗ el ⊗ ei ⊗ ek.

(14)

The virtue of the index notation is that it makes no distinction amongst these
various products on the RHS—unless a distinction can be found between such
expressions as ej i

l k and e j i
l k .

4. Compositions

In order to demonstrate the rules of matrix composition, let us consider
the matrix equation

Y = AXB′, (15)
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which we shall construe as a mapping from X to Y . In the index notation, this
is written as

(ykle
l
k) = (akie

i
k)(xije

j
i )(blje

l
j)

= ({akixijblj}el
k).

(16)

Here we have
{akixijblj} =

∑
i

∑
j

akixijblj ; (17)

which is to say that the braces surrounding the expression on the LHS are to
indicate that summations are taken with respect to the repeated indices i and
j. The operation of composing two factors depends upon the cancellation of a
superscript (column) index, or string of indices, in the leading factor with an
equivalent subscript (row) index, or string of indices, in the following factor.

The matrix equation of (15) can be vectorised in a variety of ways. In
order to represent the mapping from Xc = (xijeji) to Y c = (yklelk), we may
write

(yklelk) = ({akixijblj}elk)

= (akiblje
ji
lk)(xijeji).

(18)

Notice that the product akiblj within (akiblje
ji
lk) does not need to be surrounded

by braces since it contains no repeated indices. Nevertheless, there would be
no harm in writing {akiblj}.

The matrix (akiblje
ji
lk) is decomposable. That is to say

(akiblje
ji
lk) = (blje

j
l ) ⊗ (akie

i
k)

= B ⊗ A;

and, therefore, the vectorised form of equation (15) is

Y c = (AXB′)c

= (B ⊗ A)Xc.
(19)

Example. The equation under (11), which relates to a two-way analysis of
variance, can be vectorised to give

(ytjejt) = µ(ejt) + (e t
jt)(γtet) + (ej

jt)(δjej) + (εtjejt). (20)

Using the notation of the Kronecker product, this can also be rendered as

Y c = µ(ιM ⊗ ιT ) + (ιM ⊗ IT )γ + (IM ⊗ ιT )δ + Ec

= Xβ + Ec.
(21)
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In comparing (20) and (21), we see, for example, that (e t
jt) = (ej)⊗ (et

t) =
ιM ⊗ IT . We recognise that (et

t) is the sum over the index t of the matrices
of order T which have a unit in the tth diagonal position and zeros elsewhere;
and this sum amounts, of course, to the identity matrix of order T .

By vectorising our example under (12), we get

y11

y21

y31

y12

y22

y32

y13

y23

y33


=



1 1 0 0 1 0 0
1 0 1 0 1 0 0
1 0 0 1 1 0 0

1 1 0 0 0 1 0
1 0 1 0 0 1 0
1 0 0 1 0 1 0

1 1 0 0 0 0 1
1 0 1 0 0 0 1
1 0 0 1 0 0 1





µ

γ1

γ2

γ3

δ1

δ2

δ3


+



ε11

ε21

ε31

ε12

ε22

ε32

ε13

ε23

ε33


. (22)

5. Matrix Differential Calculus

We shall now use the index notation to examine three alternative defi-
nitions of the derivative of a matrix function Y = Y (X) with respect to its
matrix argument X. We shall establish relationships amongst these definitions
and we shall argue that only one of them is viable. The other definitions, which
are widely used in multivariate statistical analysis, are not consistent with the
classical representation of linear algebra via matrix theory, and they lead to
serious practical difficulties which do not arise when the appropriate definition
is adopted.

According to the first definition, the derivative is a partitioned matrix
[∂Y/∂xij ] whose ijth partition is derived from the matrix Y by replacing
each element ykl by its derivative ∂ykl/∂xij . Thus the elements of the ma-
trix derivative have the same disposition as the elements xijykl of the product
X ⊗ Y = (xije

j
i ) ⊗ (ykle

l
k), which we can also write as

X ⊗ Y = (xijykle
jl
ik). (23)

This definition has been studied by Rogers [10] amongst others; and he has
ascribed to it the notation εY/εX. Graham [3] has also adopted it as the basic
definition in his textbook.

According to the second definition, the derivative of Y with respect to X is
a partitioned matrix [∂ykl/∂X] whose klth partition is derived from the matrix
X by replacing the elements xij by the derivatives ∂ykl/∂xij . The elements of
the matrix derivative therefore have the same disposition as the elements of

Y ⊗ X = (xijykle
lj
ki). (24)
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This is probably the most commonly used definition. It has been employed
extensively by both Rogers [10] and Balestra [1] in their treatises of matrix
differential calculus; and it was adopted by MacRae [5] in a seminal article to
which many authors have referred.

From another point of view, the two definitions already considered follow
directly from the definitions of Dwyer and MacPhail [2] who considered the
forms ∂Y/∂xij and ∂ykl/∂X without arranging them into partitioned matrices.

According to the third definition, the derivative of Y with respect to X is
a matrix ∂Y c/∂Xc whose elements ∂ykl/∂xij have the same arrangements as
the elements yklxij in the product

Y c ⊗ (Xc)′ = (xijykle
ji
lk). (25)

This final definition, which we may call the vectorial definition, has been used by
Neudecker [8] and by the present author—Pollock [9]—amongst many others.
Nel [7] has ascribed to this derivative the notation ∂vecY/∂vec′X.

The relationships between the three definitions are revealed by juxtaposing
their expressions: [

∂Y

∂xij

]
=

(
∂ykl

∂xij
ejl
ik

)
,[

∂ykl

∂X

]
=

(
∂ykl

∂xij
elj
ki

)
,[

∂Y c

∂Xc

]
=

(
∂ykl

∂xij
eji
lk

)
.

(26)

The first two derivatives are seen to differ from each other only in respect
of the orders within the pair of column indices j, l and within the pair of row
indices k, i. The third derivative ∂Y c/∂Xc differs from the other two in a more
complicated way which requires the conversion of the basis vectors ei and el

into ei and el respectively.

6. Chain Rules

To illustrate the contention that the vectorial definition is the appropriate
one, we shall consider the problem of defining a chain rule for matrix derivatives.

Let X = X(Z) and Y = Y (X) be two matrix transformations whose
composition is Y = Y (Z). Then the vectorial definition gives rise to a rule in
the form of

∂Y c

∂Zc
=

∂Y c

∂Xc

∂Xc

∂Zc
, (27)

which entails nothing more than the multiplication of the forms ∂Y c/∂Xc and
∂Xc/∂Zc according to the ordinary rules of matrix algebra. Chain rules obey-
ing the normal algebra of matrix compositions are not available for the other
definitions which we have considered.
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To provide the simplest example of the chain rule under (27), let us consider
the following matrix equations:

Y = AXB′ or (ykle
l
k) = (akie

i
k)(xije

j
i )(blje

l
j),

X = CZD′ or (xije
j
i ) = (cifef

i )(zfueu
f )(djuej

u).
(28)

The composition of the two mappings gives

Y = (AC)Z(BD)′ or (ykle
l
k) = ({akicif}ef

k)(zfueu
f )({bljdju}el

u). (29)

The vectorised versions of the two equations under (28) are given by

Y c = (B ⊗ A)Xc or (yklelk) = ({bljaki}eji
lk)(xijeji),

Xc = (D ⊗ C)Zc or (xijeji) = ({djucif}euf
ji )(zfueuf ),

(30)

and that of their composition under (29) is given by

Y c = (BD⊗AC)Zc or (yklelk) = ({bljdju}{akicif}euf
lk )(zfueuf ). (31)

Next, by referring to the definition under (26), we find that ∂Y c/∂Xc =
({∂ykl/∂xij}eji

lk) = (bljakie
ji
lk). In this manner, we can easily confirm that

∂Y c

∂Xc
= B ⊗ A,

∂Xc

∂Zc
= D ⊗ C,

∂Y c

∂Zc
= BD ⊗ AC.

(32)

Finally, by confirming that

(B ⊗ A)(D ⊗ C) = (bljakie
ji
lk)(djucifeuf

ji )

= ({bljdju}{akicif}euf
lk )

= ({bljdju}eu
l ) ⊗ ({akicif}ef

k) = BD ⊗ AC,

(33)

we verify the chain rule in question.
To obtain chain rules for the alternative definitions, we are obliged to

invent special operations of composition which do not accord with the usual
matrix algebra. Consider the following derivatives:[

∂ykl

∂X

]
= (bljakie

lj
ki) = (A′)c ⊗ Br,[

∂xij

∂Z

]
= (djucifeju

if ) = (C ′)c ⊗ Dr,[
∂ykl

∂Z

]
= ({akicif}{bljdju}elu

kf ) = ([AC]′)c ⊗ (BD)r.

(34)
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A chain rule is obtained by defining a star product of the derivatives such that[
∂ykl

∂Z

]
=

[
∂ykl

∂X

]
∗

[
∂xij

∂Z

]
. (35)

In terms of our example, this becomes
([A′]c ⊗ Br) ∗ ([C ′]c ⊗ Dr) = ([AC]′)c ⊗ (BD)r or

(bljakie
lj
ki) ∗ (djucifeju

if ) = ({akicif}{bljdju}elu
kf ).

(36)

In place of the ordinary convention of matrix multiplication, which implies that

(eji
lk)(euf

ji ) = (euf
lk ), (37)

we have a new convention of star products to the effect that

(elj
ki) ∗ (eju

if ) = (elu
kf ). (38)

This star product is a generalisation of a product which MacRae [5] used
in defining a rule for the composition of a derivative ∂y/∂X of a scalar function
y = y(X) with the derivative [∂xij/∂Z] of a matrix function X = X(Z).

The generalised star product has the manifest disadvantage that it cannot
be extended in any simple way to accommodate the composition of multiple
tensor products. By contrast, the usual rules for matrix manipulation extend
easily to such cases. For example, for triple products or matrices, we have the
simple rule that

(A ⊗ B ⊗ C)(D ⊗ E ⊗ F ) = AD ⊗ BE ⊗ CF. (39)
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