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BURMAN’S METHOD OF SIGNAL EXTRACTION:
THE START-UP PROBLEM

Consider a seasonal ARIMA model of the form

(1) y(t) =
θ(L)
ψ(L)

ε(t) =
θ(L)

ψS(L)ψT (L)
ε(t),

where ψS(L) stands for the seasonal factors and ψT (L) stands for the trend
factors. We assume that there is a sample of T observations on y(t), running
from t = 0 to t = T − 1.

The autocovaraince generating function of the model can be decomposed
into three components, which correspond to the trend effect, the seasonal effect
and an irregular influence. Thus

(2)
θ(z)θ(z−1)

ψS(z)ψT (z)ψT (z−1)ψS(z−1)
=

QT (z)
ψT (z)ψT (z−1)

+
QS(z)

ψS(z)ψS(z−1)
+R(z).

According to Wiener–Kolmogorov theory, the optimal signal-extraction filter
for the seasonal component is

(3)

βS(L) =
QS(L)

ψS(L)ψS(L−1)
× ψS(L)ψT (L)ψT (L−1)ψS(L−1)

θ(L)θ(L−1)

=
QS(L)ψT (L)ψT (L−1)

θ(L)θ(L−1)
=

DS(L)
θ(L)θ(L−1)

.

Using a partial-fraction decomposition, this can be written as

(4)
DS(L)

θ(L)θ(L−1)
=
GS(L)
θ(L)

+
GS(L−1)
θ(L−1)

.

The estimate of the seasonal component is therefore

(5) s(t) = f(t) + b(t) =
GS(L)
θ(L)

y(t) +
GS(L−1)
θ(L−1)

y(t).

This consists of a component f(t), obtained by running forwards through the
data, and a component b(t), obtained by running backwards through the data.

In order to compute either of these components, one needs some initial
conditions. Consider the recursion running backward through the data, which
is associated with the equation

(6) θ(L−1)b(t) = GS(L−1)y(t).

This requires some post-sample values of both b(t) and y(t) for its initial con-
ditions. The post-sample values of y(t) are generated in the usual way using a
recursion based upon the equation of the ARMA model, which is

(7) ψ(L)y(t) = θ(L)ε(t).
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Here the requisite post-sample elements of ε(t) are represented by their zero-
valued expectations.

Next, in order to find the post-sample values of b(t), we need to consider
the equation

(8) ψ(L)b(t) = ψ(L)
GS(L−1)
θ(L−1)

y(t) =
GS(L−1)
θ(L−1)

ψ(L)y(t) = v(t).

Given that the post-sample elements of ε(t) for t > T − 1 are represented by
zeros, it follows that the elements of ψ(L)y(t) = θ(L)ε(t) are zero-valued for
t ≥ T + q, where q is the degree of the polynomial θ(L). The elements of v(t),
which are combinations of the elements of ψ(L)y(t), are likewise zero-valued
for t ≥ T + q.

There are therefore two sets of equations, obtained from (6) and (8), re-
spectively, from which the post-sample values of b(t) can be deduced; and these
can be written as

(9)
θ(L−1)b(t) = w(t), where w(t) = GS(L−1)y(t), and

ψ(L)b(t) = v(t), where v(t) = 0 for t > T + q.

We can proceed as follows. First the post-sample values of y(t) are forecast
for t = T, . . . , T + q+ r− 1, where r = max(p, q) is the maximum of the orders
autoregressive and moving average operators in equation (7). Next, the values
of the intermediate series w(t) = GS(L−1)y(t) are found for t = 0, . . . , T+q−1.
The latter are sufficient to enable us to form the equation θ(L−1)b(t) = w(t) of
(9) for t = T +q−p, . . . , T+q−1. We can also form the equations ψ(L)b(t) = 0
for the ensuing dates t = T + q, . . . , T + 2q − 1. The two sets of equations can
be combined to form the following system:
(10)

θ0 θ1 . . . θq 0 . . . 0
0 θ0 . . . θq−1 θq . . . 0
...

...
. . . . . .

...
0 0 . . . θ0 θ1 . . . θq

ψp ψp−1 . . . ψ0 0 . . . 0
0 ψp . . . ψ1 ψ0 . . . 0
...

...
. . . . . .

...
0 0 . . . ψp ψp−1 . . . ψ0





bT+q−p
bT+q−p+1

...
bT+q−1

bT+q

bT+q+1

...
bT+2q−1


=



wT+q−p
wT+q−p+1

...
wT+q−1

0
0
...
0


These equations are solved to obtain the start-up values for running the recur-
sion of (6).

A similar method can be used for finding the start-up values for running
a recursion based on the equation

(11) θ(L)f(t) = GS(L)y(t)

which is the mirror image of (6). The estimate of the seasonal component is
found by adding the corresponding elements of f(t) and b(t).

2


