
D.S.G. POLLOCK : BRIEF NOTES ON TIME SERIES

CONVERSION OF FILTERS FROM LOWPASS TO BANDPASS

The idea of a frequency transformation is to derive a filter from an existing
prototype in a way that preserves some of its frequency-domain characteristics.
The prototype is usually a lowpass or a highpass filter and the derived filters
are typically bandpass filters or bandstop filters.

A highpass filter can be derived by subtracting a lowpass filter from an
allpass filter or from unity. Likewise, a lowpass filter can be derived from a
highpass filter by subtraction. A pair of filters that sum to unity are described
as complementary. As well as complementary highpass and lowpass filters,
there are also complementary pairs of bandpass and bandstop filters.

We shall concentrate our attention on a lowpass prototype filter and we
shall consider transforming it to another lowpass filter and to a bandpass filter.
Highpass filters and bandstop filters which are complementary to these filters
may be found by subtracting them from unity. There is also a simple reflection
in the frequency domain around the point ω = π/2, which divides the positive
frequency range, that serves to convert a lowpass filter to a highpass filter.

A filter may be characterised by it impulse response {ψj ; j = 0±1,±2, . . .},
which may be a finite or an infinite sequence. In the case of an finite impulse
response (FIR) filter, the sequence is synonymous with the filter coefficients.
In the case of an infinite impulse response (IIR) filter, the impulse response
is often generated by taking the coefficients from the series expansion of a
rational operator. Regardless of the origin of the sequence, we shall denote its
z-transform by

ψ(z) =
∑

j

ψjz
j , (1)

and this notation can also serve equally for the rational function ψ(z) =
µ(z)/α(z) or for its series expansion, which will correspond to the RHS of
the equation above.

Setting z = e−iω gives the frequency response of the filter, which may
be denoted either by ψ(eiω) or, more economically, by ψ(ω). In general, the
frequency response ψ(ω) is a complex-valued periodic function of ω with a
period of 2π. The squared modulus of the filter is

|ψ(z)|2 = ψ(z−1)ψ(z), (2)

and setting z = e−iω gives the squared gain of the filter.
Since the filter coefficients are real-valued, the frequency response function,

which is their Fourier transform, is symmetric about the point ω = 0 of zero
frequency. For any value of ω, it maps to a point in the complex plane. The
function can be represented in polar form by

ψ(ω) = |ψ(ω)|e−iθ(ω)) = |ψ(ω)|[cos{θ(ω)} − i sin{θ(ω)}], (3)

where |ψ(ω)| is the distance of the point from the origin and Arg{ψ(ω)} =
−θ(ω) is the angle that the line joining the point to the origin makes with the
horizontal real axis.
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Frequency Shifting

The first frequency transformation to consider is one that creates as band-
pass filter from a lowpass filter. The frequency response of the ideal lowpass
filter, defined on the interval [−π, π], is given by

ψ(ω) =


1, if ω ∈ (−δ, δ);

1/2, if ω = ±δ,

0, otherwise.

(4)

Since the cut-off points ±δ constitute a set of measure zero in the context of
the frequency interval, it is common to neglect to specify the corresponding
ordinates ψ(−δ) = ψ(δ) = 1/2. The coefficients of this filter are given by the
inverse Fourier transform of the frequency response:

ψj =
1
2π

∫ δ

−δ

e−iωj =


δ

π
, if j = 0,

sin(δj)
πj

, if j �= 0.
(5)

To convert the lowpass filter to a bandpass filter, two copies are made of
the lowpass passband and the copies are shifted so that their new centres lie at
the frequencies −γ and γ. The frequency response of the copy centred on γ is

ψ(ω − γ) =
∑

j

ψje
−i(ω−γ)j

=
∑

j

ψj{e−iγj}e−iωj .
(6)

On its own, this would generate a set of complex-valued filter coefficients. The
other the copy, ψ(ω+γ), which must accompany it, is centred on −γ. It follows
that the frequency response of the bandpass filter is

ψB(ω) = ψ(ω − γ) + ψ(ω + γ)

= 2
∑

j

{
ψj

(
eiγj + e−iγj

2

)}
e−iωj

= 2
∑

j

{ψj cos(γj)} e−iωj .

(7)

The coefficients of the bandpass filter are the real-valued elements ψj cos(ωj);
and it may be said that they are obtained by modulating the original coefficients
by a cosine function.

When the ideal filter is transformed in this way, the resulting filter has the
response

ψB(ω) =


1, if |ω| ∈ (α, β),

1/2, if ω = ±α,±β,

0, otherwise,

(8)
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where α = γ − δ and β = γ + δ are the cut-off points of the pass band in
the interval [0, π]. The bandpass coefficients that are derived from the ideal
specification of (5) may be expressed variously as

2ψj cos(γj) =
2
πj

sin(δj) cos(γj)

=
1
πj

sin{(γ + δ)j} − sin{(γ − δ)j}

=
1
πj

{sin(β)j − sin(α)j},

(9)

where the trigonometrical identity 2 cosA sin B = sin(A + B) − sin(A − B)
accounts for second equality.

The first equality of (9) relates to the modulation of the coefficients of the
prototype filter. The final equality, which may be written as ψB(ω) = ψβ(ω)−
ψα(ω), indicates that the bandpass filter may be formed by the subtracting a
lowpass filter with a cut-off at ω = α from the a lowpass filter with a cut-off
at ω = β. Therefore, there are two alternative but equivalent ways of forming
this bandpass filter.

In this example, the component lowpass filters ψβ(ω) and ψα(ω) originate
as transformations of the same prototype filter ψ(ω). This is an unnecessary
restriction, and, in general, the component filters may have distinct origins.

Allpass Frequency Transformations

The method of frequency shifting is not readily applicable to an IIR filter in
the form of a rational transfer function, unless the latter is expanded as a power
series. An alternative way of creating a bandpass filter from lowpass prototype,
which is more flexible but more complicated, depends upon applying a so-called
allpass transformation g(z) to the argument z of the prototype function ψ(z)
to create a compound function ψT (z) = ψ{g(z)}.

The function g(z) is designed to map the unit circle into itself. As z travels
around the circle, g(z) will travel the same path at a different rate and, possibly,
from a different starting point. Moreover, depending on its specification, when
z completes one circuit, g(z) will complete one or more circuits.

If g(z) completes a single circuit, then the local retardation or acceleration
of its trajectory can be used to distort the frequency response of the prototype
filter and to shift its location. If g(z) completes a number of circuits, then
the effect will be to map multiple copies of the filter response into a frequency
interval of 2π.

The general specification of the all pass function is

g(z) = ± c̃(z−1)
c(z)

= ±znc(z−1)
c(z)

=
zn + c1z

n−1 + · · · + cn−1z + cn

1 + c1z + · · · + cn−1zn−1 + cnzn
. (10)

For the compound filter to be stable, it is necessary that all of the roots of c(z)
should lie outside the unit circle, Since the roots of znc(z−1) are the reciprocals
of the roots of c(z), they must all lie inside the unit circle.
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According to the argument principle, the number of times that the trajec-
tory of a function g(z) encircles the origin as z = eiω travels around the unit
circle is equal to the number of zeros within the circle less the number of poles
that lie within it. Therefore, if c(z) is of degree n, then g(z) will encircle the
origin n times. We shall consider only cases where n = 1, 2.

It is straightforward to confirm the following properties:

(i) g(z−1)g(z) = 1,

(ii)
c̃(1)
c(1)

= 1 and
c̃(−1)
c(−1)

= −1.
(11)

The first condition confines the trajectory of g(z) to the unit circle. The second
condition indicates that, if Arg(z) = 0, then Arg{c̃(z)/c(z)} = 0 whereas, if
Arg(z) = π, then Arg{c̃(z)/c(z)} = π. That to say, the trajectories of z
and g(z) = c̃(z)/c(z) meet where the unit circle intersects the horizontal real
axis. However, if a negative sign is applied to c̃(z)/c(z), then g(z) will be
diametrically opposite to z when the two are on the real axis.

The coefficients of the allpass function may be determined so as to ensure
an appropriate correspondence between the features of the prototype filter and
those of the derived filter. The usual requirement is for an particular placement
of the cut-off points of the pass bands of the derived filter. First, we shall
consider a first-order transformation that shifts the cut-off point of a lowpass
filter. Then, we shall consider a second-order transformation that converts a
lowpass filter to a bandpass filter.

The first-order transformation is

g(z) = ±z(1 − cz−1)
1 − cz

. (12)

When the sign is positive, g(z) and z coincide at z = ±1. Elsewhere, g(z) leads
z or lags behind it consistently. If c > 0, then the effect of the lead of g will
be to shift the cut-off point to the left to a lower frequency. If c < 0 then the
effect of the lag of g will be to shift the cut off point to the right. If c = 0, then
g(z) = z and there will be no effect.

Consider also the transformation g(z) = −z, and let z = eiω. Then, the
effect of replacing z in ψ(z) by g(z) is to shift the frequency response by delaying
or advancing it by π radians, which is half the period of this function. Thus,
the lowpass response of the prototype filter over the interval [−π, 0], which is

ψ(ω) =

{
0, for ω ∈ [−π,−δ),

1, for ω ∈ (−δ, 0],

becomes

ψH(ω) = ψ(ω + π) =

{
0, for ω ∈ [0, π − δ);

1, for ω ∈ (π − δ, π],

which is the response of a highpass filter.
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Now consider the case where it is desired to shift the lowpass cut-off fre-
quency in [0, π] from ω = δ to ω = κ . Then, z = eiκ must be mapped into
g(z) = eiδ. To find the appropriate value of the allpass parameter h, we may
write the function of (12) in the form of g(1 − cz) − z(1 − cz−1) = 0. Then,
multiplying by g−1/2z−1/2 gives

0 = g1/2z−1/2(1 − cz) − g−1/2z1/2(1 − cz−1)

= (g1/2z−1/2 − g−1/2z1/2) − c(g1/2z1/2 − g−1/2z−1/2).
(13)

Setting z = eiκ and g = eiδ and dividing by 2i gives

0 = sin
(

δ − κ

2

)
− c sin

(
δ + κ

2

)
, (14)

which serves to determine the coefficient c of the allpass transformation.
The second-order allpass function is

g(z) = ±z2(1 + c1z
−1 + c2z

−2)
1 + c1z + c2z2

. (15)

which can be rewritten in a symmetrised homogeneous form as

(z−1g1/2 ± zg−1/2) + c1(g1/2 ± g−1/2) + c2(g1/2z ± g−1/2z−1) = 0. (16)

With z = eiκ and g = eiδ, the expression can be rendered in terms or cosine
functions, if the expressions in parentheses are sums, or in terms of sines if the
expressions are differences.

Consider the case of the conversion of a lowpass filter to a bandpass filter.
The trajectory of g must travel twice around the unit circle for each cycle of z.
In the process, two images of the response of the lowpass prototype filter over
[−π, π] will be mapped into the interval [0, 2π]. The first image will be mapped
into [0, π], which is the positive frequency interval of the derived bandpass filter.
The second image will be mapped into [π, 2π], which is synonymous with the
negative frequency interval [−π, π] of the derived filter.

Since g starts its trajectory at 0 when z starts at −π, there is a phase lag of
π radians, which implies that the sign on g(z) must be is negative. Therefore,
in this case, the expressions in the parentheses of (16) are sine functions. To
achieve the desired locations of the bandpass cut-off points, which are at the
frequencies α, β ∈ [0, π], the point z = e−iδ must be mapped into z = e−iα and
the point z = eiδ must be mapped into z = eiβ . By substituting these pairs of
points into (16), we may derive two linear equations that can be solved for the
values of the parameters c1, c2 of the allpass function g(z).

Given the prolific nature of the trigonometrical identities, there are nu-
merous ways in which the solutions to these equations may be presented. The
conventional expression for the solution is due to Constantindes (1967–1970):

g(z) = −
z2 − 2αk

k + 1
z +

k − 1
k + 1

k − 1
k + 1

z2 +
2αk

k + 1
z + 1

,

α =
cos{(β + α)/2}
cos{β − α)/2} ,

k = cot
(

(β − α

2

)
tan

(
δ

2

)
.

(17)
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