D.S.G. POLLOCK : BRIEF NOTES ON TIME SERIES

THE EQUATIONS OF THE KALMAN FILTER

The state-space model, which underlies the Kalman filter, consists of two equa-
tions

yr = He& + ny, Observation Equation (1)
& =D& + v, Transition Equation (2)

where y; is the observation on the system and &; is the state vector. The
observation error 7; and the state disturbance v; are mutually uncorrelated
random vectors of zero mean with dispersion matrices

D(ny) = and D(v) = ¥,. (3)

It is assumed that the matrices H;, ®;, 2; and ¥; are known forallt =1,....n
and that an initial estimate x( is available for the state vector &y at time ¢t = 0
together with a dispersion matrix D(§y) = FPy. The empirical information
available at time ¢ is the set of observations Z; = {y1,...,y:}.

The Kalman-filter equations determine the state-vector estimates zy;—; =
E(&|Zs—1) and x; = E(&|Z;) and their associated dispersion matrices Py
and P;. From w,,_;, the prediction §;,_; = Hyw—;1 is formed which has a
dispersion matrix F;. A summary of these equations is as follows:

Ty = Py, State Prediction (4)
Pye—1 = QP 1P, + Uy, Prediction Dispersion (5)
e =y — Hyxyp 1, Prediction Error (6)
Fy = H;Py,_1H| 4+ Q, Error Dispersion (7)
Ky =Py, HF, Kalman Gain (8)
Ty = Typ—1 + Kiey, State Estimate 9)
Py = (I — K¢Hy) Py Estimate Dispersion (10)

Alternative expressions are available for P, and K; are available on the
assumption that €2; is nonsingular:

Py = (Pl + H{Q7 H) 7Y (11)
K, = P,HQ; . (12)

By applying the well-known matrix inversion lemma to the expression on the
RHS of (11), we obtain the original expression for P, given under (10). To
verify the identity P, H,;F, ' = P,H;Q; ' which equates (8) and (12), we
write it as P, ' Py, H] = H,Q; 'F;. The latter is readily confirmed using the
expression for P; from (11) and the expression for F; from (7).

Derivation of the Kalman Filter. The equations of the Kalman filter
may be derived using the ordinary algebra of conditional expectations which
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indicates that, if x,y are jointly distributed variables which bear the linear

relationship E(y|x) = o + B{x — E(z)}, then
E(ylz) = E(y) + C(y,2)D~ ' (z){z — B(x)}, (13)
D(y|z) = D(y) — Cly,2)D~ " (z)C(z,y), (14)
E{E(ylz)} = E(y), (15)
D{E(ylz)} = C(y,2)D~"(z)C(x,y), (16)
D(y) = D(ylz) + D{E(y|) }, (17)
Cly — E(ylz),z} =0. (18)

Of the equations listed under (4)—(10), those under (6) and (8) are merely

definitions.
To demonstrate equation (4), we use (15) to show that

E(gtyzt—l) = E{E(ft‘ft—l)ﬂt—l}
= B{®:& 1|71} (19)

= (Dtt'l?tfl.
We use (17) to demonstrate equation (5):

D(&|Zi—1) = D(&|&e-1) + D{E(§t|§t—1)ﬂt—1}
=V, + D{®:&1|Ti—1 } (20)
== \Ilt + étPt—lq);y
To obtain equation (7), we substitute (1) into (6) to give e; = Hy (& —
Ty¢—1) + 1. Then, in view of the statistical independence of the terms on the

RHS, we have
D(e;) = D{H¢(& — m44-1) } + D(me)

/ (21)
= Hi Py Hy + Q4 = D(y:|Z;—1).
To demonstrate the updating equation (9), we begin by noting that
C(&, ye|Ti1) = E{(& — xye—1)yi }

= E{(& — wep—1) (He&e +m0)'} (22)

= Pyy—1 Hj.

It follows from (13) that

B(&|T:) = B(&|Ze-1) + C (&, ye|Ze-1) D™ (we| o) { e — Bye|Ze-1) } (23)

= wt\tfl + Pt|t71H£Ft_let-
The dispersion matrix under (10) for the updated estimate is obtained via
equation (14):
D(&|Ty) = D(&|Zi-1) — C (&, yelTe—1) D™ (ye| Te-1) C (e, 4| Te—1)

o (24)
= Pyy—1 — Py 1 Hi by " He Py 1.



