D.S.G. POLLOCK: BRIEF NOTES IN TIME SERIES ANALYSIS

A CLASSICAL SMOOTHING FILTER

This note describes the means of implementing a classical smoothing device which
is used in a wide variety of applications ranging from industrial design to econo-
metric time-series analysis. In industrial design, the device corresponds to the
well-know Reinsch smoothing spline which has been used widely in automotive
and aeronautical engineering and in naval architecture. In econometrics, the same
device, which is used for trend estimation, has been called the Hordrick—Prescott
filter.

Imagine that a set of T' coordinates (z;,y:);t =0,...,T — 1 are available and
that it is required to interpolate a curve £(t) through these points so as to describe
a smooth trajectory which does not depart too far from the data. A criterion which
balances the two conflicting objectives of smoothness and goodness of fit is to find
a trend which minimises the function

T-1 T2
(1) S = Z(yt—ft)2+)\z {11 —ft)—(ft—ft—l)}27
t=0 t=1

where the values & = &(z;) are the ordinates of the interpolated function at the
points x;. The first term of the criterion function is the sum of squares of the
deviations of the curve from the points. On the understanding that the abscissae
are equally spaced, the sum of squares from the second term, which comprises
the centralised second differences of the sequence {{;}, represents a measure of
the overall curvature of the function {(x). The purpose of the parameter \ is to
strike a balance between the two aspects of the criterion which are liable to be in
conflict.

A wide variety of curves may be fitted to the data points in fulfilment of
the criterion of minimising the function S. In the case of the Reinsch smoothing
spline, the function £(x) is a compound curve made of short cubic segments which
bridge the gaps between adjacent nodes (x¢—1,&—1), (z1,&). The segments are
subject to continuity conditions at the nodes which require that the first and
second derivatives of adjacent segments are equal at the junctions.

The cubic spline is the mathematical analogue of an old-fashioned draftsman’s
tool which can be used to draw smooth curves. The draftsman’s spline is a thin
flexible piece of wood which is clamped to a series of pins placed along the path
of the curve which has to be described. The pins to which the spline is clamped
correspond to the data points through which we might interpolate a mathematical
cubic spline. The cubic spline becomes a device for modelling a trend when, instead
of passing through the data points, it is allowed, in the interests of smoothness
to deviate from them. One can imagine a spline which is attached to the pins by
springs. Then the degree of smoothing would be determined by the stiffness of
the springs.

In smoothing a time series, there is no need to bridge the gaps between adja-
cent data points unless one wishes to envisage an underlying continuous process
of which the points represent periodic observations. Therefore, in the sequel, we
shall confine our attention to the determination of the ordinates ;. We shall make
two separate approaches to the problem; and we shall end by showing that they
are, essentially, equivalent.
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The Problem in Terms of Matrix Algebra

Define the vectors y = [yo,y1,.--,yr—1]’, & = [£0,&1,---,&r—1]’, and let Q'
be a matrix of order (T"— 2) x T which is the analogue of the centralised second
difference operator. Also define the matrix W = Q'Q of order (T'—2) x (T' — 2).
For specific examples of these matrices, one may consider the case where T' = 6.
Then

1 =2 1 0 0 0 6 —4 1 0
(2) @'= 8 (1) _12 —12 (1) 8 and W = _14 —64 _64 —14
o0 0 1 -2 1 0 1 —4 6

With this notation, the criterion of (1) can be written as

(3) S=@w—-8 (y—&+I'QQ’¢

Differentiating the criterion function S with respect to £ and setting the result
to zero for a minimum gives a first-order condition

(4) y—E+AQQE =0,
from which it follows that

(5) y=(A\QQ +1)§

This equation may be solved to obtain the vector £ of the estimated trend. Observe
that, whereas the matrix QQ’ is singular, the matrix AQQ’ + I will nonsingular
for all finite values of A

There is a way of solving the equation which may have some advantage in
terms of numerical stability when the value of X is large. Consider premultiplying
the equation (5) by Q'. Then we get

(©) d=Qy=\Q'Q+ Q¢
= (AW +1)

where d = Q’q is the vector [dy,ds, . ..,dr_s]" of the second differences of the data
and where § = Q'€ is the corresponding vector obtained by differencing £.

The square matrix AW + I = ® is of order T'— 2 and, in view of its size and
the sparseness of its nonzero elements, it should never be formed in practice. Only
the generic elements of its rows should be stored in the computer. Nevertheless,
the matrix represents a useful concept in describing the solution procedure.

Consider therefore the Cholesky decomposition ® = M M’, wherein M rep-
resents a lower-triangular matrix of three nonzero diagonals bands. With A > 0,
the matrix AW + I = ® is manifestly positive definite. Therefore the Cholesky
decomposition is always available and the diagonal elements of M are guaranteed
to be real positive numbers. Consider writing the equation (6) as

(7) d=MM's§ =Mq  with ¢= M.
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To solve this equation, we first obtain the vector ¢ from d = Mgq. Here the tth
row takes the form of

qt—2
(8) [Mt,t—z Mt t—1 ,Ut,t] Gi—1 | = d;.
qt
Rearranging this gives
1
(9) qt = —{dt — Mtt—14t—1 — Nt,t—2Qt—2}7
Mt

which shows that the equation can be solved by a simple recursion beginning with
¢1 =di/po,1 and g2 = {dy —p1.1d1 }/p1 1. Once the elements of vector ¢ have been
computed, those of the vector § may be calculated by a similar recursion based on
the equation ¢ = M’S§. This second recursion, which notionally works backward
in time. generates the elements of the vector ¢, in the order dp_5,d7_o,...,0d1.

Once the elements of the differenced vector § = Q’¢ have been found, those
of the trend vector £ can be recovered from the equation

(10) E=y+2Q0
whch comes directly from the first-order condition of (4).

The Problem in Terms of Linear Filtering

Let y(t) denote the time series from which the trend is to be extracted. Let L
denote the lag operator, which has the effect that Ly(t) = y(t—1), and let F = L~}
denote the forwards-shift operator such that Fy(t) = y(t +1). If V=1 — L and
A = F'—1I denote, respectively, the backwards difference operator and the forwards
difference operator, then VA = F' — 21 + L denotes the centralised version of the
operator which produces the second difference of a series.

The problem which we can now envisage is that of estimating a trend series
&(t) such that the series

(11) {y(t) — )} + A {vaew)}

is minimised for every value of . For a fixed value of ¢, we must minimise the
quantity

{y: — 515}2 + Mo — 2641 + §t}2
(12) + A& — 26 + 51&—1}2
+M{& — 261 + &—2}2-

Differentiating this with respect to & and setting the result to zero gives a first-
order condition for minimisation. The latter indicates that the sequence £(t) must
obey the condition

(13) {AF? —ANF + (6A + 1)I — ANL + AL* }E(t) = y(t).
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The operator in equation (10) defines a symmetric two-sided filter which looks
equally backwards and forwards in time. The filter can be written in the form of

= {AF? —4AF + (6A + 1)I — 4AL + AL*}
(14) = (po + 1 F + poF?)(po + pu1 L + poL?)
= p(F)u(L).

Notice that the coefficients of the filter polynomial correspond to the nonzero
elements of a row of the matrix ® = AW + I of equation (6). The factorisation of
the polynomial ¢(L) into its forwards and backwards components can be effected
using the methods which are applied in finding the parameters of a moving-average
process from its autocovariances.

The filter ¢(L) = p(F)u(L) might be applied directly to a process £(t) to
generate y(t) = p(L)&(t). However it cannot be used to generate £(t) from y(t)
by a direct recursion based on the equation

(15) = —{y +ANE(E— 1) — (6A+ 1)E(t —2) +4E(t — 3) — NE(t —4)}

which is a rearrangement of (13). The reason is that this difference equation is
unstable. The roots of the operator ¢(L) consist of the roots of (L) and their
reciprocals which are the roots of u(F). If the roots of (L) lie outside the unit
circle, in fulfilment of the condition for the stability of an ordinary difference
equation, then the roots of p(F') will assume values inside the unit circle which
violate the stability condition.

In order to generate the values of the trend sequence £(t) from those of the
sequence y(t), it is necessary to pursue two separate recursions. The first recursion,
which runs forwards in time, finds the values of the sequence q(t) = u=*(L)y(t)
via the equation

(16) a(t) = %{yw nalt— 1) — et — 2)}.

This process of generating ¢(¢) is the analogue of the first stage of the solution
of the equations under (7). The second recursion, which runs backwards in time,
finds the values of the sequence £(t) = p~1(F)q(t) via the equation

(17) () = i{q@) €+ 1) — g (t+2)}

This process is the analogue of the second stage of the solution of the equations
under (7).



