THE PERIODOGRAM AND THE
CIRCULAR AUTOCOVARIANCES

A natural way of representing the serial dependence of the elements of the data
sequence [yo, Y1, ---,Yyr—1] is to estimate their autocovariances. The empirical
autocovariance of lag 7 is defined by the formula
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The empirical autocorrelation of lag 7 is defined by r. = ¢, /¢y where ¢, which
is formally the autocovariance of lag 0, is the variance of the sequence. The
autocorrelation provides a measure of the relatedness of data points separated
by 7 periods which is independent of the units of measurement.

The periodogram may be written as
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where w; = 27j/T is the jth Fourier frequency, which relates to the trigono-
metrical function that completes j cycles in the period spanned by the data.
We should also be aware of the identity ), cos(w;t)(y: — §) = >, cos(w;t)ye,
which follows from the fact that, by construction, ), cos(w;t) = 0 for all j.
The inclusion of § in (2) is to assist in the ensuing developmemts.

It is straightforward to establish the relationship between the periodogram
and the sequence of autocovariances. Expanding the RHS of (2) gives
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and, by using the identity cos(A) cos(B) + sin(A) sin(B) = cos(A — B), we can
rewrite this as
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Next, on defining 7 =t — s and writing ¢ = >, (y+ — 9)(ys—r — 9)/T', we can
reduce the latter expression to
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which is a Fourier transform of the sequence of empirical autocovariances.

From the definition of the frequency wj, it follows that cos(w;{T" — 7}) =
cos(w;7), which is to say that the cosine is an even function of the index 7 =
0,...,T — 1. Therefore, (5) can be rewritten as

(6) I(w;) = 2{00 + Tz_lcos(wjf)(@ + cTT)},
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Here, the values ¢o = cg,¢r = cr+cpr_-;7 =1,...T —1 constitute the so-called
circular autocovariances.
It is easy to see that there is a one-to-one correspondence between the

sequence of circular autocovariances c¢g,...,¢r_1 and the sequence of peri-
odogram ordinates Iy, ..., Ir_1. We have already seen in (6) that
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To show that, conversely,
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we may substitute into the latter the expression for I;. The result should be
an identity. Thus we find that
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But the orthogonality relationships affecting the cosine functions at the Fourier
frequencies imply that
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Using these results in (9) reduces the RHS to ¢;, which establishes the necessary
identity.



