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STRUCTURAL TIME-SERIES MODELS

The structural time-series model represents the components of a time series, which
are its trend, its cyclical components and its irregular component, as the products
of independent ARIMA processes. The basic structural model, which lacks a non-
seasonal cyclical component, takes the form of

(1) y(t) = λ(t) + σ(t) + ε(t).

The trend or levels component λ(t) is a stochastic process which generates a
trajectory that is approximately linear within a limited locality. Thus

(2) λ(t) = λ(t− 1) + β(t− 1) + η(t) or, equivalently, ∇λ(t) = β(t− 1) + η(t).

That is to say, the change in the level of the trend is compounded from the slope
parameter β(t− 1), generated in the previous period, and a small white-noise dis-
turbance η(t). The slope parameter follows a random walk. Thus

(3) β(t) = β(t− 1) + ζ(t) or, equivalently, ∇β(t) = ζ(t),

where ζ(t) denotes a white-noise process which is independent of the disturbance
process η(t). By applying the difference operator to equation (2) and substituting
from (3), we find that

(4)
∇2λ(t) = ∇β(t− 1) +∇η(t)

= ζ(t− 1) +∇η(t).

The two terms of the RHS can be combined to form a first-order moving averages
process, whereupon the process generating λ(t) can be described by an integrated
moving-average IMA(2, 1) model. Thus

(5)
∇2λ(t) = ζ(t− 1) +∇η(t)

= (1− µL)ν(t).

A limiting case arises when the variance of the white-noise process ζ(t) in
equation (3) tends to zero. Then the slope parameter tends to a constant β, and the
process by which the trend is generated, which has been identified as an IMA(2,1)
process, becomes a random walk with drift.

Another limiting case arises when the variance of η(t) in equation (2) tends to
zero. Then the overall process generating the trend becomes a second-order random
walk, and the resulting trends are liable to be described as smooth trends.

When the variances of ζ(t) and η(t) are both zero, then the process λ(t) de-
generates to a simple linear time trend.

The seasonal component of the structural time-series model is described by the
equation

(6)

σ(t) + σ(t− 1) + · · ·+ σ(t− s+ 1) = ω(t)

or, equivalently,

Sσ(t) = ω(t),
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where S = 1 + L + L2 + · · · + Ls−1 is the seasonal summation operator, s is the
number of observation per annum, and ω(t) is a white-noise process.

The equation implies that the sum of s consecutive values of this component
will be a random variable distributed about a mean of zero. To understand this
construction, we should note that, if the seasonal pattern were perfectly regular
and invariant, then the sum of the consecutive values would be identically zero.
Since the sum is a random variable with a zero mean, some variability can occur
in the seasonal pattern.

By combining equations (1), (4) and (6), we seen that the structural model
can be represented by the equation

(7)

∇2Sy(t) = Sζ(t− 1) +∇Sη(t) +∇2ω(t) +∇2Sε(t),

or, equivalently,

∇∇sy(t) = Sζ(t− 1) +∇sη(t) +∇2ω(t) +∇∇sε(t),

where ζ(t), η(t), ω(t) and ε(t) are mutually independent white-noise processes.
Here the alternative expression comes from using the identity ∇S = (1 − L)(1 +
L+ · · ·+Ls−1) = (1−Ls) = ∇s. We should observe that the RHS or equation (7)
constitutes a moving average of degree, s+1 which is typically subject to a number
of restriction on its parameters. The restrictions arise from the fact there are only
four parameters in the model of (7), which are the white noise variances V {ζ(t−1)},
V {η(t)}, V {ω(t)} and V {ε(t)}, whereas there are s+ 1 moving average parameters
and a variance parameter in the unrestricted reduced-form of the seasonal ARIMA
model.

The basic structural model can be represented is a state-space form which
comprises a transition equation, which constitutes a first-order vector autoregressive
process, and an accompanying measurement equation. For notational convenience,
let s = 4, which corresponds to the case of quarterly observations on annual data.
Then the transition equation, which gathers together equations (2) (3) and (6), is

(8)


λ(t)
β(t)
σ(t)

σ(t− 1)
σ(t− 2)

 =


1 1 0 0 0
0 1 0 0 0
0 0 −1 −1 −1
0 0 1 0 0
0 0 0 1 0



λ(t− 1)
β(t− 1)
σ(t− 1)
σ(t− 2)
σ(t− 3)

+


η(t)
ζ(t)
ω(t)

0
0

 .
The observation equation, which corresponds to (1), is

(9) y(t) = [ 1 0 1 0 0 ]


λ(t)
β(t)
σ(t)

σ(t− 1)
σ(t− 2)

+ ε(t).

The state-space model is amenable to the Kalman filter and the associated smooth-
ing algorithms, which can be used in estimating the parameters of the model and
in extracting estimates of the so-called unobserved components λ(t), σ(t) and ε(t).
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