
An Integrated Wiener Processes and its Discrete-Time Analogue

A Wiener process Z(t) consists of an accumulation of independently dis-
tributed stochastic increments. The path of Z(t) is continuous almost every-
where and differentiable almost nowhere. If dZ(t) stands for the increment
of the process in the infinitesimal interval dt, and if Z(a) is the value of the
function at time a, then the value at time τ > a is given by

(1) Z(τ) = Z(a) +
∫ τ

a

dZ(t).

Moreover, it is assumed that the change in the value of the function over any
finite interval (a, τ ] is a random variable with a zero expectation:

(2) E
{
Z(τ)− Z(a)

}
= 0.

Let us write ds ∩ dt = ∅ whenever ds and dt represent non-overlapping
intervals. Then the conditions affecting the increments may be expressed by
writing

(3) E
{
dZ(s)dZ(t)

}
=
{ 0, if ds ∩ dt = ∅;
σ2dt, if ds = dt.

These conditions imply that the variance of the change over the interval (a, τ ]
is proportional to the length of the interval. Thus

(4)
V
{
Z(τ)− Z(a)

}
=
∫ τ

s=a

∫ τ

t=a

E
{
dZ(s)dZ(t)

}
=
∫ τ

t=a

σ2dt = σ2(τ − a).

The definite integrals of the Wiener process may be defined also in terms
of the increments. The value of the first integral at time τ is given by

(5)
Z(1)(τ) = Z(1)(a) +

∫ τ

a

Z(t)dt

= Z(1)(a) + Z(a)(τ − a) +
∫ τ

a

(τ − t)dZ(t),

where the second equality comes via (85). The mth integral is

(6) Z(m)(τ) =
m∑
k=0

Z(m−k)(a)
(τ − a)k

k!
+
∫ τ

a

(τ − t)m
m!

dZ(t).

The covariance of the changes Z(j)(τ) − Z(j)(a) and Z(k)(τ) − Z(k)(a) of
the jth and the kth integrated processes derived from Z(t) is given by

(7)
C(a,τ)

{
z(j), z(k)

}
=
∫ τ

s=a

∫ τ

t=a

(τ − s)j(τ − t)k
j!k!

E
{
dZ(s)dZ(t)

}
= σ2

∫ τ

a

(τ − t)j(τ − t)k
j!k!

dt = σ2 (τ − a)j+k+1

(j + k + 1)j!k!
.
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The object of our exercise is to find the form of a discrete-time model which
will represent a sequence of observations y0, y1, . . . , yn taken of an integrated
Wiener process at the times t0, t1, . . . , tn. The interval between ti and ti−1 is
hi = ti − ti−1 which, for the sake of generality, will be allowed to vary in the
first instance, albeit that, ultimately, we shall set hi = 1 for all i.

In order to conform to the existing notation, we define

(8) ζi = Z(ti) and ξi = Z(1)(ti)

to be, respectively, the slope of the trend component and its level at time ti,
where Z(ti) and Z(1)(ti) are described by equations (1) and (5). Also we define

(9) εi =
∫ ti

ti−1

dZ(t) and νi =
∫ ti

ti−1

(ti − t)dZ(t).

Then the equation for the slope, which was

(10) Z(ti) = Z(ti−1) +
∫ ti

ti−1

dZ(t),

becomes

(11) ζi = ζi−1 + εi,

and the equation for the level, which was

(12) Z(1)(ti) = Z(1)(ti−1) + Z(ti)hi +
∫ ti

ti−1

(ti − ti−1)dZ(t),

becomes

(13) ξi = ξi−1 + ζi−1hi + νi.

The model of the underlying trend can now be written is state-space form
as follows:

(14)
[
ξi

ζi

]
=
[

1 hi

0 1

] [
ξi−1

ζi−1

]
+
[
νi

εi

]
,

whilst a corresponding observation which associates an error ηi with the ith
observation would be written as

(15) yi = [ 1 0 ]
[
ξi

ζi

]
+ ηi.

Using the result under (7), we find that the dispersion matrix for the state
disturbances is

(16) D

[
νi

εi

]
= σ2

ε

[ 1
3h

3
i

1
2h

2
i

1
2h

2
i hi

]
,
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where σ2
ε is the variance of the Wiener process.

To simplify matters we may assume that the time intervals between ob-
servations are constant with hi = 1 for all i. The the processes generating the
sequences {ζt} and {ξt} can be written as

(17)
ξ(t) = ξ(t− 1) + ζ(t− 1) + ν(t), or

(I − L)ξ(t) = ζ(t− 1) + ν(t),

and

(18)
ζ(t) = ζ(t− 1) + ε(t), or

(I − L)ζ(t) = ε(t).

Combining the two equations gives

(19)
ξ(t) =

ζ(t− 1)
I − L +

ν(t)
I − L

=
ε(t− 1)
(I − L)2

+
ν(t)
I − L.

or equivalently

(20)
(I − L)2ξ(t) = ε(t− 1) + (I − L)ν(t)

= ν(t)− ν(t− 1) + ε(t− 1).

On the RHS of this equation is a sum of stationary stochastic process which can
be expressed as an ordinary first-order moving-average process. The parameters
of the latter process may be inferred from it autocovariances which arise from
a combination of the autocovariances of ε(t) and ν(t). The variance γ0 of the
MA process is given by the sum of the elements of the matrix

(21) E

 ν2
t −νtνt−1 νtεt−1

−νt−1νt ν2
t−1 −νt−1εt−1

εt−1νt −εt−1νt−1 ε2
t−1

 = σε

 1
3 0 0
0 1

3 − 1
2

0 − 1
2 1

 .
Thus it is found that γ0 = 4σε/6 The first autocovariance γ1 of the MA process
is given by the sum of the elements of the matrix

(22) E

 νtνt−1 −νtνt−2 νtεt−2

−ν2
t−1 νt−1νt−2 −νt−1εt−2

εt−1νt−1 −εt−1νt−2 εt−1εt−2

 = σε

 0 0 0
−1

3 0 0
1
2 0 0

 .
Thus γ1 = σε/6.
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